{{tag>dc_network_analysis pure_resistor_network_simplification delta_wye_transformation exam_ee1_WS2022}} {{include_n>4000}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Equivalent linear Source \\ (written test, approx. 14 % of a 60-minute written test, WS2022) #@TaskText_HTML@# The circuit in the following has to be simplified. {{drawio>electrical_engineering_1:6tqttque1e2nf2c7Circuit.svg}} Calculated the internal resistance $R_\rm i$ and the source voltage $U_\rm s$ of an equivalent linear voltage source on the connectors $\rm A$ and $\rm B$. \begin{align*} R_1=5.0 ~\Omega, && U_2=6.0 ~\rm{V}, && R_3= 10 ~\Omega, \\ I_4=4.2 ~\rm{A}, && R_5=10 ~\Omega , && R_6=7.5 ~\Omega, \\ R_7=15 ~\Omega && && \end{align*} Use equivalent sources in order to simplify the circuit! #@PathBegin_HTML~1~@# The best thing is to re-think the wiring like rubber bands and adjust them: {{drawio>electrical_engineering_1:6tqttque1e2nf2c7CircuitSolution1.svg}} \\ The linear voltage source of $U_2$ and $R_1$ can be transformed into a current source $I_2={{U_2}\over{R_1}}$ and $R_1$: {{drawio>electrical_engineering_1:6tqttque1e2nf2c7CircuitSolution2.svg}} \\ Now a lot of them can be combined. The resistors $R_1$, $R_3$, $R_5$ are in parallel, like also $I_2$ and $I_4$: \begin{align*} R_{135} &= R_1||R_3||R_5\\ I_{24} &= I_2 - I_4 = {{U_2}\over{R_1}} - I_4 \end{align*} The resulting circuit can again be transformed: {{drawio>electrical_engineering_1:6tqttque1e2nf2c7CircuitSolution3.svg}} \\ Here, the $U_{24}$ is calculated by $I_{24}$ as the following: \begin{align*} U_{24} &= R_{135} \cdot I_{24} \\ &= ({{U_2}\over{R_1}} - I_4) \cdot R_1||R_3||R_5 \end{align*} On the right side of the last circuit, there is a voltage divider given by $R_{135}$, $R_6$, and $R_7$. \\ Therefore the voltage between $A$ and $B$ is given as: \begin{align*} U_{\rm AB} &= U_{24} \cdot {{R_7}\over{R_6 + R_7 + R_1||R_3||R_5}} \\ &= ({{U_2}\over{R_1}} - I_4) \cdot {{R_7 \cdot R_1||R_3||R_5}\over{R_6 + R_7 + R_1||R_3||R_5}} \\ \end{align*} For the internal resistance $R_i$ the ideal voltage source is substituted by its resistance ($=0\Omega$, so a short-circuit): \begin{align*} R_{\rm AB} &= R_7 || ( R_6 + R_1||R_3||R_5) \\ \end{align*} with $R_1||R_3||R_5 = 5 ~\Omega || 10 ~\Omega || 10 ~\Omega = 5 ~\Omega || 5 ~\Omega = 2.5 ~\Omega$: \begin{align*} U_{\rm AB} &= ({{6.0 ~\rm{V}}\over{5.0 ~\Omega}} - 4.2 ~\Omega) \cdot {{15 ~\Omega \cdot 2.5 ~\Omega}\over{7.5 ~\Omega + 15 ~\Omega + 2.5 ~\Omega}} \\ R_{\rm AB} &= 15 ~\Omega|| ( 7.5 ~\Omega + 2.5 ~\Omega) \\ \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~1~@# \begin{align*} U_{\rm s} &= U_{\rm AB} &&= 4.5 ~\rm{V}\\ R_{\rm i} &= R_{\rm AB} &&= 6 ~\Omega \end{align*} #@ResultEnd_HTML@# #@TaskEnd_HTML@#