{{tag>network_simplification exam_ee1_SS2023}} {{include_n>1000}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Pure Resistor Network Simplification \\ (written test, approx. 12 % of a 60-minute written test, SS2023) #@TaskText_HTML@# The circuit below shall be given. The values in the circuit are * $R_1 = 60 ~\Omega$ * $R_2 = 40 ~\Omega$ * $R_3 = 40 ~\Omega$ * $R_4 = 100 ~\Omega$ * $U_{\rm AB} = 10 ~\rm V$ {{drawio>electrical_engineering_1:cgeyprm6oboukcciCircuit.svg}} 1. Calculate the voltage at node $\rm K$, when switch $\rm S$ is open. \\ It might be beneficial to redraw the circuit first. #@PathBegin_HTML~1~@# Rearranging the circuit one can get: {{drawio>electrical_engineering_1:cgeyprm6oboukcciCircuitSolve1.svg}} Once the switch $\rm S$ is opened, the upper part is a parallel circuit. Therefore, $R_{\rm eq}$ is given as: \begin{align*} R_{\rm eq} &= (R_1+R_2)||(R_1+R_2)+R_4 \\ &= {{1}\over{2}}\cdot(R_1+R_2)+R_4 \\ &= {{1}\over{2}}\cdot(60~\Omega + 40~\Omega) + 100~\Omega \\ \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~1~@# \begin{align*} R_{\rm eq} &= 150~\Omega \end{align*} #@ResultEnd_HTML@# 2. Calculate the voltage at node $\rm K$, when switch $\rm S$ is closed. #@PathBegin_HTML~2~@# The voltage divider for node $\rm K$ has the same proportionality as the voltage divider for node $\rm K'$. Therefore, the potential of $\rm K$ is the same as for $\rm K'$. There will be no current flow through $R_3$. The resistance does not create a voltage drop and therefore does not interfere with the circuit. #@PathEnd_HTML@# #@ResultBegin_HTML~2~@# The equivalent resistance is similar to the circuit with opened switch. \begin{align*} R_{\rm eq} &= 150~\Omega \end{align*} #@ResultEnd_HTML@# #@TaskEnd_HTML@#