{{tag>resistivity power exam_ee1_SS2023}} {{include_n>500}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Resistivity and temperature dependent Resistance \\ (written test, approx. 7 % of a 60-minute written test, SS2023) #@TaskText_HTML@# The resistance of the dielectric material of a film capacitor has to be calculated. \\ The given film capacitor has an internal surface of $A=100 ~\rm dm^2$ and a distance between the plates of $d=0.8 ~\rm μm$. \\ The resistivity of the dielectric material is $\rho_{\rm PP}(20 ~\rm °C)=10^{17} ~\Omega m$. \\ For the given material the temperature coefficients in the range of $20 ~\rm °C$ and $55 ~\rm °C$ are given as $\alpha =-0.048 ~\rm 1/K$ and $\beta=+0.00057 ~\rm 1/K^2$. {{drawio>electrical_engineering_1:kyt15w11e3sempb2Circuit.svg}} Calculate the resistance for the dielectric material for $20 ~\rm °C$. #@PathBegin_HTML~1~@# \begin{align*} R(20 ~\rm °C) &= \rho\cdot {{d}\over{A}}\\ &= 10^{17} ~\Omega \rm m \cdot {{0.8\cdot 10^{-6} ~\rm m}\over{1 ~\rm m^2}} \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~1~@# \begin{align*} R(20 ~\rm °C) &= 80 ~\rm G\Omega\\ \end{align*} #@ResultEnd_HTML@# Calculate the resistance for the dielectric material for $55 ~\rm °C$. #@PathBegin_HTML~2~@# \begin{align*} R(55 ~\rm °C) &= R(20 ~\rm °C) \cdot (1+\alpha\cdot\Delta T + \beta\cdot T^2 + ...)\\ &= 80 ~\rm G\Omega \cdot (1-0.048 ~\rm 1/K \cdot(35 ~{\rm K}) + 0.00057 ~\rm 1/K^2\cdot\Delta (35 ~{\rm K})^2 ) \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~2~@# \begin{align*} R(55 ~\rm °C) &= 1.46 ~\rm G\Omega \end{align*} #@ResultEnd_HTML@# (In reality, the relationship between $R$ and $T$ for Polypropylene is better described by the $B25$ value in an exponential formula. In this case, the best fit would be $B25 = 15’000$ for $T$ between $20 ~\rm °C$ and $100 ~\rm °C$) #@TaskEnd_HTML@#