{{tag>charging capacities exam_ee1_SS2023}} {{include_n>1000}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ (Dis)Charging Capacities \\ (written test, approx. 14 % of a 60-minute written test, SS2023) #@TaskText_HTML@# The circuit below has to be analyzed. The component values are: * $U = 10 ~\rm V$ * $C_1 = 200 ~\rm nF$ * $R_1 = 8.0 ~\rm k\Omega$ * $R_2 = 17 ~\rm k\Omega$ * $R_3 = 7.0 ~\rm k\Omega$ * $I = 2.0 ~\rm mA$ {{drawio>electrical_engineering_1:p8yrdjr60k6bvc4nCircuit.svg}} Before $t_0$ all switches are switched as shown and the capacitor is fully discharged. \\ At $t_0=0 ~\rm s$ the switch $S_1$ shall switch to the voltage source. 1. Calculate the time constant for charging the capacitor. #@PathBegin_HTML~1~@# The time constant is generally given as: \begin{align*} \tau &= R\cdot C \end{align*} Once $S_1$ is closed and $S_2$ is open at $t_0$, the source $U$ drives the current through the series circuit given by $S_1$, $C$, $R_1$ and $R_3$.\\ Therefore, $R= R_1 + R_3$ \begin{align*} \tau_1 &= (R_1+R_3)\cdot C \\ &= (8~\rm k\Omega + 7~\rm k\Omega) \cdot 0.2 ~\rm \mu F \\ &= 15\cdot 10^{3} \cdot 0.2 \cdot 10^{-6} ~\rm {{V}\over{A}}{{As}\over{V}}\\ \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~1~@# \begin{align*} \tau_1 = 3.0 ~\rm ms \end{align*} #@ResultEnd_HTML@# 2. What is the voltage $u_C$ at $t_1=t_0+4 ~\rm ms$? #@PathBegin_HTML~2~@# \begin{align*} u_C(t_1) &= U_0 \cdot(1-e^{-t/\tau} ) \\ &= 10~\rm V \cdot(1-e^{-4~ms/3~ ms} ) \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~2~@# \begin{align*} u_C(t_1) &= 7.36~\rm V \end{align*} #@ResultEnd_HTML@# 3. The capacitors shall be charged to $U=10 ~\rm V$ at the time $t_2$. \\ At this point in time, the switch $S_1$ switches to the situation shown in the drawing. What is the new time constant? #@PathBegin_HTML~3~@# Again, the time constant is generally given as: \begin{align*} \tau &= R\cdot C \end{align*} Now, $\rm S_1$ is opened and $\rm S_2$ is closed. Then, the source $U$ drives the current through the series circuit given by $\rm S_1$, $C$, $R_1$ and $R_2$.\\ Therefore, $R= R_1 + R_2$ \begin{align*} \tau_2 &= (R_1+R_2)\cdot C \\ &= (8~\rm k\Omega + 17~\rm k\Omega) \cdot 0.2 ~\rm \mu F \\ &= 25\cdot 10^{3} \cdot 0.2 \cdot 10^{-6} ~\rm {{V}\over{A}}{{As}\over{V}}\\ \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~3~@# \begin{align*} \tau_2 = 5.0 ~\rm ms \end{align*} #@ResultEnd_HTML@# 4. Draw the overall course of the voltage $u_C(t)$ over time in the diagram below. \\ Use an appropriate $x$-axis scale. {{drawio>electrical_engineering_1:p8yrdjr60k6bvc4nUtDiagramQuestion.svg}} #@PathBegin_HTML~4~@# Both courses of the voltage for charging and discharging are described with an exponential function. However, the curve for charging increases first steep and flattens out for longer time scales ($\propto (1-e^{-x})$). #@PathEnd_HTML@# #@ResultBegin_HTML~4~@# {{drawio>electrical_engineering_1:p8yrdjr60k6bvc4nUtDiagramSolution.svg}} #@ResultEnd_HTML@# 5. The switch $S_2$ is then closed, with $S_1$ still as shown in the drawing. What will be the maximum voltage of $u_C$? #@PathBegin_HTML~5~@# The current of the source flows through the circuit consisting of $C$ in parallel with $R_1+R_2$. Without the parallel resistors, the current source would charge the capacitor "to infinity" ($u_C \rightarrow \infty$) . This is here limited by the parallel resistors $R_1+R_2$. The maximum voltage on the branch with the resisors $R_1+R_2$ is \begin{align*} U_{12} &= R \cdot I \\ &= (R_1+R_2) \cdot I \end{align*} This is also the maximum voltage on the capacitor, since it is in parallel with the resisors. #@PathEnd_HTML@# #@ResultBegin_HTML~5~@# \begin{align*} U_C &= 50 ~\rm V \end{align*} #@ResultEnd_HTML@# #@TaskEnd_HTML@#