{{tag>efficiency charges power exam_ee1_SS2023}} {{include_n>1000}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Efficiency \\ (written test, approx. 14 % of a 60-minute written test, SS2023) #@TaskText_HTML@# A lithium-ion battery cell can be considered a linear voltage source with an internal resistance $R_\rm i$ and a source voltage $U_\rm s=3.5 ~\rm V$. The battery shall provide energy for a mobile device with a load resistance of $R_\rm L=2 ~\Omega$ The following values are from the lithium-ion battery datasheet: * Internal impedance: $R_\rm i =50 ~\rm m\Omega$ * Maximum discharge current: $I_{\rm Dis max} =3 ~\rm A$ * Typical capacity: $2'600 ~\rm mAh$ 1. Draw an **equivalent circuit diagram** with the internal resistance and an external load. Label all voltages and currents. #@ResultBegin_HTML~1~@# {{drawio>electrical_engineering_1:w3wf215v2u98ty07Circuit.svg}} #@PathEnd_HTML@# 2. Calculate the **efficiency of the battery** in this case. #@PathBegin_HTML~2~@# \begin{align*} \eta &= {{R_\rm L}\over{R_\rm L + R_\rm i}} \\ &= {{2 ~\Omega}\over{2 ~\Omega + 0.05 ~\Omega}} \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~2~@# \begin{align*} \eta = 97.56... \% \rightarrow \eta = 97.6 \% \end{align*} #@ResultEnd_HTML@# 3. (**HARD**) Once the load resistance is changed, the efficiency for discharging also changes. What would be the **lowest possible efficiency**? #@PathBegin_HTML~3~@# Lowest efficiency for highest current, so for $I_{\rm Dis max}. In this case, the efficiency is: \begin{align*} \eta &= {{U_\rm S - R_\rm i \cdot I_{\rm Dis max}}\over{U_\rm S}} \\ &= 1 - R_\rm i \cdot {{I_{\rm Dis max}}\over{U_\rm S}} \\ &= 1 - 0.05 {~\rm \Omega} \cdot {{3~\rm A}\over{3.5 ~\rm V}} \\ \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~3~@# \begin{align*} \eta = 95.71... ~\% \rightarrow \eta = 95.7 ~\% \end{align*} #@ResultEnd_HTML@# 4. Calculate the **voltage drop on the load resistance** $R_\rm L=2 ~\Omega$. #@PathBegin_HTML~4~@# Voltage divider with $R_\rm i$ and $R_\rm L$: \begin{align*} U_\rm L= U_\rm S \cdot {{R_\rm L}\over{R_\rm L + R_\rm i}} \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~4~@# \begin{align*} U_\rm L= 3.414... ~\rm V \rightarrow U_\rm L= 3.4 ~\rm V \end{align*} #@ResultEnd_HTML@# 5. How much **charged $\rm Li$ ions** have **to be moved** in the battery to charge it from $0~ \%$ to $100~\%$? \\ Lithium is monovalent – so, there are only $\rm Li^+$ ions. The elementary charge is $q_\rm e=1.602 \cdot 10^{-19} ~\rm C$. #@PathBegin_HTML~5~@# \begin{align*} n_{\rm Li^+}={{Q}\over{q_\rm e}} \\ \\ Q &= 2.6 {~\rm Ah} \\ &= 2.6 \cdot 3600 {~\rm As} \\ &= 9360 {~\rm As} = 9360 {~\rm C} \end{align*} #@PathEnd_HTML@# #@ResultBegin_HTML~5~@# \begin{align*} n_{\rm Li^+}=5.842... \cdot 10^{22} \rightarrow n_{\rm Li^+}=5.84 \cdot 10^{22} \\ \end{align*} #@ResultEnd_HTML@# #@TaskEnd_HTML@#