{{tag>resonant_circuit exam_ee2_SS2022}}{{include_n>1130}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Series Resonant Circuit \\ (written test, approx. 10 % of a 120-minute written test, SS2022) #@TaskText_HTML@# A real capacitor behaves like an RLC resonant circuit, with an equivalent series resistance $R$ and an equivalent series inductance $L$. \\ A capacitor shall be given with the following values: * $C=10 ~\rm nF$ * $R=88 ~\rm m\Omega$ * $L=60 ~\rm pH$ {{drawio>ee2:7El8zLZJglAazXTw_question1.svg}} 1. What is the impedance $\underline{Z}_{RLC}$ of this real capacitor for $f_0=100 ~\rm MHz$? (Phase and magnitude) #@HiddenBegin_HTML~7El8zLZJglAazXTw_11,Path~@# The impedance $\underline{Z}_{RLC}$ is given by: \begin{align*} \underline{Z}_{RLC} &= R + \underline{X}_{L} + \underline{X}_{C} \\ &= R + {\rm j}\omega L - {{\rm j}\over{\omega C}} \\ &= R + {\rm j}\cdot \left(\omega L - {{1}\over{\omega C}} \right)\\ &= R + {\rm j}\cdot {X}_{LC} \\ \end{align*} Putting in the numbers, only for the reactive part ${X}_{LC}$: \begin{align*} {X}_{LC} &= 2\pi\cdot \quad \quad f_0 \quad \quad \cdot \quad L \quad \quad \quad \; - {{1}\over{2\pi \cdot \quad \quad f_0 \quad \quad \cdot \quad \quad C \quad\quad}} \\ &= 2\pi \cdot 100 \cdot 10^{6}{~\rm Hz} \cdot 60 \cdot 10^{-12}{~\rm H} - {{1}\over{2\pi \cdot 100 \cdot 10^{6}{~\rm Hz} \cdot 10 \cdot 10^{-9}{~\rm F}}} \\ &= -121.45... ~\rm m\Omega \\ \end{align*} With the real and imaginary parts, we can derive the magnitude and phase: \begin{align*} Z_{RLC} &=\sqrt{R^2 + {X}_{LC}^2} \\ &=\sqrt{(88 ~\rm m\Omega)^2 + (-121.45 ~\rm m\Omega)^2} \\ &= 150.0... ~\rm m\Omega \\ \end{align*} \begin{align*} \varphi &=\arctan \left( { {{{X}_{LC}}\over{R}}} \right)\\ &=\arctan \left( { {{-121.45 ~\rm m\Omega}\over{88 ~\rm m\Omega}}} \right)\\ &= -0.9437... = -54.07...° \\ \end{align*} #@HiddenEnd_HTML~7El8zLZJglAazXTw_11,Path~@# #@HiddenBegin_HTML~7El8zLZJglAazXTw_12,Result~@# * $Z_{RLC} = 150.0~\rm m\Omega $ * $\varphi = -54.07° $ #@HiddenEnd_HTML~7El8zLZJglAazXTw_12,Result~@# 2. The impedance magnitude of task 1. can be interpreted as the impedance magnitude of an effective ideal capacity $C_0$. \\ In this case, the magnitude of the impedance of $C_0$ would be $X_{C0}=Z_{RLC}$. \\ Which value would $C_0$ have for the given $f_0$? #@HiddenBegin_HTML~7El8zLZJglAazXTw_21,Path~@# The calculated impedance of $Z_{RLC}$ has to be set equal to $X_{C0}$ \begin{align*} Z_{RLC} &= X_{C0} \\ &= {{1}\over{2\pi f \cdot C}} \\ \rightarrow C &= {{1}\over{2\pi f \cdot Z_{RLC}}} \end{align*} With values: \begin{align*} C &= {{1}\over{2\pi 100 \cdot 10^{6} {~\rm MHz}\cdot 0.1500... {~\rm \Omega} }} \\ &= 10.6... ~\rm nF \end{align*} #@HiddenEnd_HTML~7El8zLZJglAazXTw_21,Path~@# #@HiddenBegin_HTML~7El8zLZJglAazXTw_22,Result~@# $ C = 10.6 ~\rm nF $ #@HiddenEnd_HTML~7El8zLZJglAazXTw_22,Result~@# 3. What is the resonance frequency $f_{\rm r}$ for the given capacitor? What is the impedance in this case? #@HiddenBegin_HTML~7El8zLZJglAazXTw_31,Path~@# The resonance frequency is given as \begin{align*} f_{\rm r} &= {{1}\over{2\pi\sqrt{LC}}} \\ &= {{1}\over{2\pi\sqrt{60 \cdot 10^{-12}{~\rm H} \cdot 10 \cdot 10^{-9}{~\rm F}}}} \\ &= 205.5... ~\rm MHz \end{align*} At resonance, the impedance is given purely by the resistor. #@HiddenEnd_HTML~7El8zLZJglAazXTw_31,Path~@# #@HiddenBegin_HTML~7El8zLZJglAazXTw_32,Result~@# * $f_{\rm r} = 205.5 ~\rm MHz$ * $88~\rm m\Omega$ #@HiddenEnd_HTML~7El8zLZJglAazXTw_32,Result~@# #@TaskEnd_HTML@#