{{tag>lorentz_force exam_ee2_SS2021}}{{include_n>1220}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Lorentz Force (hard!) \\ (written test, approx. 10 % of a 120-minute written test, SS2021) #@TaskText_HTML@# A $300 ~\rm km$ long, straight high-voltage direct current transmission line shall be analyzed. A current of $I = 1′200 ~\rm A$ flows through it. \\ A homogeneous geomagnetic field is assumed. The magnetic field strength has a vertical component of $B_{\rm v} = 40 ~\rm \mu T$ and a horizontal component of $B_{\rm h} = 20 ~\rm \mu T$. \\ The angle between the transmission line and the horizontal component of the field strength is $\alpha = 20°$. \\ The picture on the right shows the line (black), the field strength components, and the angle in front and top view for illustration purposes. {{drawio>ee2:ELndBo3XWI2kLXuu_question1.svg}} a) Calculate the force that results from the current flow on the entire conductor. \\ First, calculate the vertical and horizontal components and combine them accordingly. #@HiddenBegin_HTML~ELndBo3XWI2kLXuu_11,Path~@# The force on the transmission line can be calculated via the Lorentz force $\vec{F}_\rm L$: \begin{align*} \vec{F} = I \cdot (\vec{l} \times \vec{B}) \end{align*} Here, we have two components for the current - and therefore for the force - to evaluate. \\ Considering the right-hand rule (and the cross product), the vertical field $B_{\rm v}$ generates a horizontal force $F_{\rm h}$ and vice versa. The **__horizontal component__** is given by {{drawio>ee2:ELndBo3XWI2kLXuu_answer1.svg}} \begin{align*} F_{\rm h} &= I \cdot (l \cdot B_{\rm v}) \\ &= 1′200 {~\rm A} \cdot 300 \cdot 10^3{~\rm m} \cdot 40 \cdot 10^{-6}{~\rm {{Vs}\over{m²}}} \\ &= 14'400 ~\rm {{VAs}\over{m}} = 14'400 ~\rm {{Ws}\over{m}} = 14'400 ~\rm N \end{align*} For the **__vertical component__** the angle &\alpha& has to be considered. \\ For the maximum $F_{\rm v}$ the angle &\alpha& has to be $90°$, therefore the $\sin$ has to be used. {{drawio>ee2:ELndBo3XWI2kLXuu_answer2.svg}} \begin{align*} F_{\rm v} &= I \cdot l \cdot B_{\rm h} \cdot \sin\alpha \\ &= 1′200 {~\rm A} \cdot 300 \cdot 10^3{~\rm m} \cdot 40 \cdot 10^{-6}{~\rm {{Vs}\over{m²}}} \cdot \sin 20° \\ &= 2'462.545... ~\rm N \end{align*} For the **__overall force__** $F$ the Pythagorean theorem has to be used: \begin{align*} F &= \sqrt{F_{\rm v}^2 +F_{\rm h}^2} \\ &= \sqrt{({14'400 ~\rm N})^2 +({2'462.545... ~\rm N})^2} \\ &= 14'609.04... ~\rm N \end{align*} #@HiddenEnd_HTML~ELndBo3XWI2kLXuu_11,Path~@# #@HiddenBegin_HTML~ELndBo3XWI2kLXuu_12,Result~@# $F = 14'609 ~\rm N$ #@HiddenEnd_HTML~ELndBo3XWI2kLXuu_12,Result~@# b) The picture below shows the top view again. In which of the directions shown does the horizontal component $F_{\rm h}$ of the resulting force act? (Independent) {{drawio>ee2:ELndBo3XWI2kLXuu_question2.svg}} #@HiddenBegin_HTML~ELndBo3XWI2kLXuu_21,Path~@# * The horizontal component $\vec{F}_{\rm h}$ of the force is based on the vertical component $\vec{B}_{\rm v}$ of the magnetic field. \\ * The vertical component $\vec{B}_{\rm v}$ of the magnetic field is not shown in the image but is pointing into the ground. \\ * It has to be perpendicular to $\vec{B}_{\rm v}$ and to $\vec{l}$. The right-hand rule has to be applied. #@HiddenEnd_HTML~ELndBo3XWI2kLXuu_21,Path~@# #@HiddenBegin_HTML~ELndBo3XWI2kLXuu_22,Result~@# Only option $7.$ is perpendicular to $\vec{B}_{\rm v}$ and to $\vec{l}$ and points in the right direction by the right-hand rule. #@HiddenEnd_HTML~ELndBo3XWI2kLXuu_22,Result~@# #@TaskEnd_HTML@#