{{tag>electrostatic capacitor plate_capacitor capacity exam_ee2_SS2024}}{{include_n>1020}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Capacitor \\ (written test, approx. 12 % of a 120-minute written test, SS2024) #@TaskText_HTML@# Older capacitive pressure sensors are based on a parallel plate capacitor setup (see left-side image). {{drawio>ee2:k4wrrhf8v46gct49_question1.svg}} In the following such a sensor is given with: * Plate area : $A=25 ~\rm mm^2$ * Distance between both plates: $d=200 ~\rm \mu m$ * Air between the plates: $\varepsilon_{\rm r,air}=1$ * Supply voltage: $3.3 ~\rm V$ * Boundary effects on the end of the layers shall be ignored in the following calculations. $\varepsilon_{0} =8.854 \cdot 10^{-12} ~\rm F/m $ 1. Calculate the capacity $C$. #@HiddenBegin_HTML~k4wrrhf8v46gct49_11,Path~@# \begin{align*} C &= \varepsilon_0 \varepsilon_r {{A}\over{d}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 1 \cdot {{25 \cdot 10^{-6} {~\rm m} }\over{200 \cdot 10^{-6} {~\rm m} }} \end{align*} #@HiddenEnd_HTML~k4wrrhf8v46gct49_11,Path~@# #@HiddenBegin_HTML~k4wrrhf8v46gct49_12,Result~@# $C = 1.1 ~\rm pF$ #@HiddenEnd_HTML~k4wrrhf8v46gct49_12,Result~@# 2. Calculate the value of the displacement field between the plates, when a voltage of $U=3.3 ~\rm V$ is applied. #@HiddenBegin_HTML~k4wrrhf8v46gct49_21,Path~@# The displacement field is given by: \begin{align*} D &= \varepsilon_0 \varepsilon_r E \\ &= \varepsilon_0 \varepsilon_r {{U}\over{d}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 1 \cdot {{3.3 {~\rm V} }\over{200 \cdot 10^{-6} {~\rm m} }} \\ \end{align*} #@HiddenEnd_HTML~k4wrrhf8v46gct49_21,Path~@# #@HiddenBegin_HTML~k4wrrhf8v46gct49_22,Result~@# $D = 146 \cdot 10^{-9} \rm {{C}\over{m^2}}$ #@HiddenEnd_HTML~k4wrrhf8v46gct49_22,Result~@# 3. Calculate the charge difference between both plates for a voltage of $U=3.3 ~\rm V$. #@HiddenBegin_HTML~k4wrrhf8v46gct49_31,Path~@# There are two ways now. Either: \begin{align*} Q &= C \cdot U = 1.1 ~\rm pF \cdot 3.3 ~ V = 3.6522... ~pC \\ \end{align*} Or: \begin{align*} Q &= D \cdot A = 146 \cdot 10^{-9} \rm {{C}\over{m^2}} \cdot 25 \cdot 10^{-6} ~m^2 = 3.6522... ~pC \\ \end{align*} #@HiddenEnd_HTML~k4wrrhf8v46gct49_31,Path~@# #@HiddenBegin_HTML~k4wrrhf8v46gct49_32,Result~@# $Q = 3.65 ~\rm pC $ #@HiddenEnd_HTML~k4wrrhf8v46gct49_32,Result~@# 4. Due to a production problem, the right-side layer is covered with a contaminant, see the right-side image. \\ The contaminant has $\varepsilon_{\rm r,c}>\varepsilon_{\rm r,air}$, while the distance between the plates remains the same. Give a generalized formula $C_2=f(A,d,x,\varepsilon_{\rm r,c}, \varepsilon_{\rm r,air})$. #@HiddenBegin_HTML~k4wrrhf8v46gct49_41,Path~@# The resulting capacity $C$ is now a series circuit of $C_{\rm air}$ and $C_{\rm c}$. \\ Therefore: \begin{align*} C = {{1}\over{ {{1}\over{C_{\rm air} }} + {{1}\over{ C_{\rm c}}} }} \end{align*} With \begin{align*} C_{\rm air} &= \varepsilon_0 \varepsilon_{\rm r, air} {{A}\over{d-x}} &&= \varepsilon_0 A {{\varepsilon_{\rm r, air}}\over{d-x}} \\ C_{\rm c} &= \varepsilon_0 \varepsilon_{\rm r, c} {{A}\over{x}} &&= \varepsilon_0 A {{\varepsilon_{\rm r, c} }\over{x}} \\ \end{align*} This leads to: \begin{align*} C = \varepsilon_0 A {{1}\over{ {{d-x}\over{\varepsilon_{\rm r, air} }} + {{x}\over{ \varepsilon_{\rm r, c}}} }} \end{align*} #@HiddenEnd_HTML~k4wrrhf8v46gct49_41,Path~@# #@HiddenBegin_HTML~k4wrrhf8v46gct49_42,Result~@# $C = \varepsilon_0 A {{\varepsilon_{\rm r, air} \cdot \varepsilon_{\rm r, c} }\over{ {(d-x)\cdot{\varepsilon_{\rm r, c} }} + {x\cdot{ \varepsilon_{\rm r, air}}} }}$ #@HiddenEnd_HTML~k4wrrhf8v46gct49_42,Result~@# #@TaskEnd_HTML@#