{{tag>induction flux induced_voltage exam_ee2_SS2021}}{{include_n>1200}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ effect of induction\\ (written test, approx. 5 % of a 120-minute written test, SS2021) #@TaskText_HTML@# A single conductor loop is penetrated by a changing magnetic flux. \\ The following figure shows the variation of the flux $\Phi(t)$ over time. \\ \\ Calculate the variation of the induced voltage $u_{\rm ind}(t)$ over time and draw it in a separate diagram. {{drawio>ee2:LUdzWiUhjxITZ85B_diagram1.svg}} #@HiddenBegin_HTML~LUdzWiUhjxITZ85B_11,Path~@# Based on Faraday's Law of Induction the induced voltage is given by: \begin{align*} u_{\rm ind} =& - {{ {\rm d} }\over{ {\rm d}t}} \Psi(t) \bigg\rvert_{n=1}\\ =& - {{ {\rm d} }\over{ {\rm d}t}} \Phi(t) \\ \end{align*} For a linear function, the derivative can be substituted by Deltas ($\rm d \rightarrow \Delta$): \\ \begin{align*} u_{\rm ind} = - {{ \Delta \Phi(t)}\over{ \Delta t}} = - { { \Phi(t_{\rm n+1} ) - \Phi(t_{\rm n} ) } \over { t_{\rm n+1} - t_{\rm n} } } \\ \end{align*} For a piece-wise linear function, the induced voltage can be calculated for each interval. \\ Here, there are 5 different intervals - in the following called $\rm I$ to $\rm V$ from left to right: {{drawio>ee2:LUdzWiUhjxITZ85B_path1.svg}} * For the intervals $\rm I$, $\rm III$, and $\rm V$ , the flux $\Phi(t)$ is constant. Therefore, $\Delta \Phi(t)=0$ and $u_{\rm ind}(t)=0{~\rm V}$ \\ {{drawio>ee2:LUdzWiUhjxITZ85B_path2.svg}} * For the interval $\rm II$: * The change in the flux is: $ \Delta \Phi(t) = 1.5 \cdot 10^{-4} {~\rm Vs} - 4.5 \cdot 10^{-4} {~\rm Vs}= - 3.0 \cdot 10^{-4} {~\rm Vs}$ * The time span is: $0.2 ~\rm s$ * Conclusively, the induced voltage is: $u_{\rm ind}(t) = + {{3.0 \cdot 10^{-4} {~\rm Vs}} \over {0.2 ~\rm s} } = 1.5 {~\rm mV}$ \\ {{drawio>ee2:LUdzWiUhjxITZ85B_path3.svg}} * For the interval $\rm IV$: * The change in the flux is: $ \Delta \Phi(t) = 0 \cdot 10^{-4} {~\rm Vs} - 1.5 \cdot 10^{-4} {~\rm Vs}= - 1.5 \cdot 10^{-4} {~\rm Vs}$ * The time span is: $0.2 ~\rm s$ * Conclusively, the induced voltage is: $u_{\rm ind}(t) = + {{1.5 \cdot 10^{-4} {~\rm Vs}} \over {0.2 ~\rm s} } = 0.75 {~\rm mV}$ \\ {{drawio>ee2:LUdzWiUhjxITZ85B_path4.svg}} #@HiddenEnd_HTML~LUdzWiUhjxITZ85B_11,Path ~@# #@HiddenBegin_HTML~LUdzWiUhjxITZ85B_12,Result~@# {{drawio>ee2:LUdzWiUhjxITZ85B_solution1.svg}} #@HiddenEnd_HTML~LUdzWiUhjxITZ85B_12,Result~@# #@TaskEnd_HTML@#