{{tag>impedance inductor exam_ee2_SS2021}}{{include_n>1230}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Impedance Characteristics \\ (written test, approx. 6 % of a 120-minute written test, SS2021) #@TaskText_HTML@# A coil has an inductive reactance of $X_0 = X(f_0) = 80~\rm \Omega$ at a frequency $f_0 = 60 ~\rm kHz$. \\ Calculate the frequencies $f_1$, $f_2$, $f_3$ at which the following reactances are measured: \\ * $X_1 = 50 ~\rm \Omega$ * $X_2 = 121 ~\rm \Omega$ * $X_3 = 147 ~\rm \Omega$ #@HiddenBegin_HTML~OkzNHLJJycUQKBSh_11,Path~@# There are multiple ways to solve this question. \\ One way would be, to calculate the inductance $L$ first by rearranging $X(f) = 2\pi \cdot f \cdot L$. \\ \\ Another way uses ratios (or "rule of three"), since $X(f) = f \cdot k$ with a constant $k$. \\ Therefore one can set up two formulas $X_n = f_n \cdot k$, $X_0 = f_0 \cdot k$, and divide the formulae by each other. \\ This leads to: \begin{align*} {{X_n}\over{X_0}} &= {{f_n}\over{f_0}} \\ f_n &= {{X_n}\over{X_0}}\cdot f_0 = {{f_0}\over{X_0}}\cdot X_n \\ \end{align*} Putting in the numbers: \begin{align*} f_n &= {{60 ~\rm kHz}\over{80~\rm \Omega}}\cdot X_n \\ &= 0.75 {{\rm \Omega}\over{\rm kHz}}\cdot X_n \\ \end{align*} #@HiddenEnd_HTML~OkzNHLJJycUQKBSh_11,Path~@# #@HiddenBegin_HTML~OkzNHLJJycUQKBSh_12,Result~@# * $f_1 = 37.5~\rm kHz$ * $f_2 = 90.75~\rm kHz$ * $f_3 = 110.25~\rm kHz$ #@HiddenEnd_HTML~OkzNHLJJycUQKBSh_12,Result~@# #@TaskEnd_HTML@#