{{tag>electrostatic electric_field_strength exam_ee2_SS2022}}{{include_n>1020}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Electron Velocity in Semiconductors \\ (written test, approx. 6 % of a 120-minute written test, SS2022) #@TaskText_HTML@# A current of $I=1~\rm mA$ flows through a cross-sectional area $A=10~\rm \mu m^2$ in a semiconductor.\\ The electron density in the semiconductor is given by the number of dopant atoms per volume. \\ The doping shall provide 1 donator atom (= one electron) per $10^{10}$ silicon atoms. \\ The molar volume of silicon is $V_{\rm mol,Si} = 12\cdot 10^{-6} ~\rm m^3/mol$ , with $N_{\rm A} = 6.022 \cdot 10^{23}$ silicon atoms per $1 ~\rm mol$. \\ \\ The elementary charge is given as: $e_0 = 1.602 \cdot 10^{-19} ~\rm As$ \\ \\ What is the average electron velocity $v_e$ in this semiconductor? #@HiddenBegin_HTML~Tx86fewVySrcy8Fc_11,Path~@# The following formula gives the speed, where $n_e$ is the number of electrons per volume. \begin{align*} v_e &= {{I}\over{n_e \cdot e_0 \cdot A}} \\ \end{align*} $n_e$ can be derived from the overall number of Si-atoms per volume (${{N_{\rm A}}\over{V_{\rm mol,Si}}}$) and the fraction $k_{\rm Donators}$ of these atoms, which got substituted by donators. \begin{align*} v_e &= {{I}\over{{{N_{\rm A}}\over{V_{\rm mol,Si}}} \cdot k_{\rm Donators} \cdot e_0 \cdot A}} \\ \end{align*} Putting in the numbers: \begin{align*} v_e &= {{1 \cdot 10^{-3}~\rm A}\over{{{6.022 \cdot 10^{23} 1/ \rm mol}\over{12\cdot 10^{-6} ~\rm m^3/mol}} \cdot 10^{-10} \cdot 1.602 \cdot 10^{-19} ~\rm As \cdot 10 \cdot (10^{-6} ~\rm m)^2}} \\ \end{align*} #@HiddenEnd_HTML~Tx86fewVySrcy8Fc_11,Path~@# #@HiddenBegin_HTML~Tx86fewVySrcy8Fc_12,Result~@# $v_e = 123 \cdot 10^6~\rm m/s$ (about $41~\%$ of the speed of light) #@HiddenEnd_HTML~Tx86fewVySrcy8Fc_12,Result~@# #@TaskEnd_HTML@#