{{tag>magnetostatic flux_density coil toroid exam_ee2_SS2021}}{{include_n>1180}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Toroidal Coil\\ (written test, approx. 5 % of a 120-minute written test, SS2021) #@TaskText_HTML@# A magnetic field with a flux density of at least $50 ~\rm mT$ is to be achieved in a ring-shaped coil (toroidal coil). \\ The coil has 60 turns, wound around soft iron with $\mu_{\rm r} = 1200$. \\ The average field line length in the coil should be $l = 12 ~\rm cm$. $\mu_{0} = 4\pi\cdot 10^{-7} {{\rm Vs}\over{\rm Am}}$ {{drawio>ee2:w3M7FO4HJAHkzOGw_diagram1.svg}} What is the minimum current that must flow through a single winding? #@HiddenBegin_HTML~w3M7FO4HJAHkzOGw_11,Path~@# The magnetic field strength of a toroidal coil is given as: \begin{align*} H &= {{N \cdot I}\over{l}} \end{align*} Based on the flux density the magnetic field strength can be derived by $B = \mu_0 \mu_{\rm r} \cdot H$. \\ By this, the formula can be rearranged: \begin{align*} H &= {{N \cdot I}\over{l}} \\ {{B}\over{ \mu_0 \mu_{\rm r}}} &= {{N \cdot I}\over{l}} \\ I &= {{B \cdot l}\over{ \mu_0 \mu_{\rm r} \cdot N}} \end{align*} Putting in the numbers: \begin{align*} I &= {{ 0.05 {~\rm T} \cdot 0.12{~\rm m} }\over{ 4\pi\cdot 10^{-7} {{\rm Vs}\over{\rm Am}} \cdot 1'200 \cdot 60}} \\ &= 0.6631... {{\rm T\cdot m}\over{ {{\rm Vs}\over{\rm Am}} }} &= 0.6631... {{\rm {{\rm Vs}\over{\rm m^2}} \cdot m}\over{ {{\rm Vs}\over{\rm Am}} }} &= 0.6631... ~\rm A \end{align*} #@HiddenEnd_HTML~w3M7FO4HJAHkzOGw_11,Path ~@# #@HiddenBegin_HTML~w3M7FO4HJAHkzOGw_12,Result~@# $I = 66 ~\rm mA$ #@HiddenEnd_HTML~w3M7FO4HJAHkzOGw_12,Result~@# #@TaskEnd_HTML@#