{{tag>complex_voltage_divider RMS inductor exam_ee2_SS2021}}{{include_n>1250}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Component Parameters \\ (written test, approx. 10 % of a 120-minute written test, SS2021) #@TaskText_HTML@# The equivalent circuit diagram of an electric motor represents a resistive-inductive load. \\ The values of the series resistance $R_{\rm M}$ and the inductance $L_{\rm M}$ are to be determined below. Both result in the impedance of the motor. a) Derive in general the equation for the absolute value of the impedance of the motor. #@HiddenBegin_HTML~WJTtvMydRSkZhcIM_11,Path~@# The complex impedance $\underline{Z}$ for a resistive-inductive load (=$R$-$L$ series circuit) is given as \begin{align*} \underline{Z} &= {\rm j} \cdot X_L + R_{\rm M} \\ &= {\rm j} \cdot 2\pi \cdot f \cdot L_{\rm M} + R_{\rm M} \\ \end{align*} The Pythagorean theorem can derive the absolute value: \begin{align*} |\underline{Z}|&= \sqrt{ (2\pi \cdot f \cdot L_{\rm M})^2 + R_{\rm M}^2 }\\ \end{align*} #@HiddenEnd_HTML~WJTtvMydRSkZhcIM_11,Path~@# #@HiddenBegin_HTML~WJTtvMydRSkZhcIM_12,Result~@# \begin{align*} Z = \sqrt{ (2\pi \cdot f \cdot L_{\rm M})^2 + R_{\rm M}^2 } \end{align*} #@HiddenEnd_HTML~WJTtvMydRSkZhcIM_12,Result~@# \\ __For the next exercises consider the following__: \\ In two measurements, an AC voltage with a constant RMS value of $U = U_1 = U_2 = 50 ~\rm V$ but two different frequencies, $f_1$ and $f_2$ was applied. \\ This resulted in the recorded current of * for $f_1 = 50 ~\rm Hz$: $I_1 = 8~\rm A$ * for $f_2 = 100~\rm Hz$: $I_2 = 5~\rm A$ b) Determine the absolute values of the impedances from the specified RMS values at $f_1$ and $f_2$ (independent). #@HiddenBegin_HTML~WJTtvMydRSkZhcIM_21,Path~@# The absolute value of the impedance is given as $Z = {{U}\over{I}}$. \\ This leads to: * $Z_1 = {{U_1}\over{I_1}} = {{50 ~\rm V}\over{8~\rm A}} $ * $Z_2 = {{U_2}\over{I_2}} = {{50 ~\rm V}\over{5~\rm A}}$ #@HiddenEnd_HTML~WJTtvMydRSkZhcIM_21,Path~@# #@HiddenBegin_HTML~WJTtvMydRSkZhcIM_22,Result~@# * $Z_1 = 6.25~\rm \Omega$ * $Z_2 = 10~\rm \Omega$ #@HiddenEnd_HTML~WJTtvMydRSkZhcIM_22,Result~@# c) Determine the component parameters $R_{\rm M}$ and $L_{\rm M}$ from a) and b)! (hard). #@HiddenBegin_HTML~WJTtvMydRSkZhcIM_31,Path~@# Since we have $Z_1$ and $Z_2$ from b) we can subtract two of the formulas from a). \\ This has the advantage that $R_{\rm M}$ will cancel out: \begin{align*} Z_2^2 - Z_1^2 &= (2\pi \cdot f_2 \cdot L_{\rm M})^2 + R_{\rm M}^2 - \left( (2\pi \cdot f_1 \cdot L_{\rm M})^2 + R_{\rm M}^2 \right) \\ &= (2\pi \cdot f_2 )^2 \cdot L_{\rm M}^2 - (2\pi \cdot f_1)^2 \cdot L_{\rm M}^2 \\ \end{align*} Now we can rearrange to $L_{\rm M}^2$: \begin{align*} Z_2^2 - Z_1^2 &= L_{\rm M}^2 \cdot \left( (2\pi \cdot f_2 )^2 - (2\pi \cdot f_1)^2 \right) \\ L_{\rm M}^2 &= {{Z_2^2 - Z_1^2} \over { (2\pi \cdot f_2 )^2 - (2\pi \cdot f_1)^2 }} \\ L_{\rm M}^2 &= {{Z_2^2 - Z_1^2} \over { (2\pi)^2 \cdot ( f_2^2 - f_1^2 ) }} \\ \end{align*} And then to $L_{\rm M}$: \begin{align*} L_{\rm M} &={{1}\over{2\pi}} \sqrt{{{Z_2^2 - Z_1^2} \over { f_2^2 - f_1^2 }} }\\ \end{align*} With the values: \begin{align*} L_{\rm M} &={{1}\over{2\pi}} \sqrt{{{(10~\Omega)^2 - (6.25~\Omega)^2} \over { (100 {{1}\over{s}})^2 - (50 {{1}\over{s}})^2 }} }\\ &=14.346... ~\rm mH\\ \end{align*} The resistance value $R_{\rm M}$ can be derived from \begin{align*} Z_2^2 &= (2\pi \cdot f_2 \cdot L_{\rm M})^2 + R_{\rm M}^2 \\ R_{\rm M}^2 &= Z_2^2 - (2\pi \cdot f_2 \cdot L_{\rm M})^2 \\ R_{\rm M} &=\sqrt{ Z_2^2 - (2\pi \cdot f_2 \cdot L_{\rm M})^2}\\ \end{align*} The values have to be inserted also for $R_{\rm M}$: \begin{align*} R_{\rm M} &=\sqrt{ (10~\rm \Omega)^2 - (2\pi \cdot 100 {{1}\over{s}} \cdot 0.014346... ~\rm H)^2}\\ &= 4.3301...~\Omega \end{align*} #@HiddenEnd_HTML~WJTtvMydRSkZhcIM_31,Path~@# #@HiddenBegin_HTML~WJTtvMydRSkZhcIM_32,Result~@# * $R_{\rm M} = 4.33 ~\Omega$ * $L_{\rm M} = 14.35 ~\rm mH$ #@HiddenEnd_HTML~WJTtvMydRSkZhcIM_32,Result~@# #@TaskEnd_HTML@#