{{tag>electrostatic capacitor plate_capacitor capacity exam_ee2_SS2022}}{{include_n>1030}} #@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Capacitor \\ (written test, approx. 7 % of a 120-minute written test, SS2022) #@TaskText_HTML@# Given is the multilayer capacitor shown below, with the following dimensions: * Length of layer overlap: $l=1.5 ~\rm mm$ * Distance between single layers: $d=1.0 ~\rm \mu m$ * Depth of component: $w=0.7 ~\rm mm$ * Number of layers (as shown in the picture): 3 left-side and 3 right-side layers. {{drawio>ee2:Y7DOzgDSLjqVnQge_question1.svg}} The material shall have a dielectric permittivity of $\varepsilon_r=3$. \\ The following calculations shall ignore boundary effects on the end of the layers. \\ \\ $\varepsilon_0 = 8.854 \cdot 10^{-12} ~\rm As/Vm$ 1. What is the field strength in the dielectric material between the layer, when a voltage of $U=6.3 ~\rm V$ is applied? #@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_11,Path~@# The electric field strength $E$ is given by: \begin{align*} E &= {{U}\over{d}} \\ &= {{6.3 ~\rm V}\over{1 \cdot 10^{-6} ~\rm m}} \\ \end{align*} #@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_11,Path~@# #@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_12,Result~@# $E = 6.3 {{\rm MV}\over{\rm m}}$ #@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_12,Result~@# 2. Calculate the capacity $C$. #@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_21,Path~@# The capacity can be derived from the geometry by: \begin{align*} C = \varepsilon_0 \varepsilon_r {{A}\over{d}} \end{align*} For the area $A$ we have multiple plates with the area $A_0= l \cdot w$ facing each other. {{drawio>ee2:Y7DOzgDSLjqVnQge_answer1.svg}} How many "multiple plates" $N$ do we have to consider? \\ For this, we have to count facing areas $A_0$. There are $N=5$. {{drawio>ee2:Y7DOzgDSLjqVnQge_answer2.svg}} Therefore, the formula is \begin{align*} C &= \varepsilon_0 \varepsilon_r {{N \cdot l \cdot w}\over{d}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 3 \cdot {{5 \cdot 1.5 \cdot 10^{-3} {~\rm m} \cdot 0.7 \cdot 10^{-3} {~\rm m} }\over{1 \cdot 10^{-6} {~\rm m} }} \end{align*} #@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_21,Path~@# #@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_22,Result~@# $C = 0.139 ~\rm nF$ #@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_22,Result~@# 3. Due to a production problem the left-side layers are covered with $d_{\rm c}=0.1 ~\rm \mu m$ of air ($\varepsilon_{r, \rm c}=1$), while the thickness of the dielectric material remains the same. \\ What is the new capacity $C_\rm c$? #@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_31,Path~@# The air builds another capacitor in series to the dielectric material. Therefore, the capacity can be calculated as \begin{align*} C_{\rm c} &= {{C \cdot C_{\rm Air}}\over{C + C_{\rm Air}}} \end{align*} The capacity of air is \begin{align*} C_{\rm Air} &= \varepsilon_0 \varepsilon_{r,\rm Air} {{N \cdot l \cdot w}\over{d_{\rm c}}} \\ &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 1 \cdot {{5 \cdot 1.5 \cdot 10^{-3} {~\rm m} \cdot 0.7 \cdot 10^{-3} {~\rm m} }\over{0.1 \cdot 10^{-6} {~\rm m} }} \\ &= 0.465... ~\rm nF \end{align*} By this the overall capacity is \begin{align*} C_{\rm c} &= {{0.139... ~\rm nF \cdot 0.465... ~\rm nF}\over{0.139... ~\rm nF + 0.465... ~\rm nF}} \end{align*} #@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_31,Path~@# #@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_32,Result~@# $C_{\rm c} = 0.107~\rm nF$ #@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_32,Result~@# #@TaskEnd_HTML@#