====== Block 20 — Electromagnetic Induction and Energy ======
===== Learning objectives =====
After this 90-minute block, you can
* ...
===== Preparation at Home =====
Well, again
* read through the present chapter and write down anything you did not understand.
* Also here, there are some clips for more clarification under 'Embedded resources' (check the text above/below, sometimes only part of the clip is interesting).
For checking your understanding please do the following exercises:
* ...
===== 90-minute plan =====
- Warm-up (x min):
- ....
- Core concepts & derivations (x min):
- ...
- Practice (x min): ...
- Wrap-up (x min): Summary box; common pitfalls checklist.
===== Conceptual overview =====
- ...
===== Core content =====
==== Self-Induction ====
Up to now, we investigated the induction of electric voltages and currents based on the change of an external flux ${\rm d}\Psi / {\rm d}t$.
For the induced current $i_{\rm ind}$, we found that it counteracts the change of the external flux (Lenz law).
But what happens, when there is no external field - only a coil which creates the flux change itself (see )?
{{drawio>InductionPhenomenons.svg}}
To understand this, we will investigate the situation for a long coil ().
{{drawio>SelfInductionCoil.svg}}
The created field density of the coil can be derived from Ampere's Circuital Law
\begin{align*}
\theta(t) &= \int & \vec{H}(t) \cdot {\rm d}\vec{s} \\
&= \int & \vec{H}_{\rm inner}(t) \cdot {\rm d}\vec{s} & + & \int \vec{H}_{\rm outer}(t) \cdot {\rm d} \vec{s} \\
&= \int & \vec{H}(t) \cdot {\rm d}\vec{s} & + & 0 \\
&= & {H}(t) \cdot l \\
\end{align*}
With magnetic voltage $\theta(t) = N \cdot i$ this lead to the magnetic flux density $B(t)$
\begin{align*}
N \cdot i &= {H}(t) \cdot l \\
{H}(t) &= {{N \cdot i }\over {l}} \\
{B}(t) &= \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \\
\end{align*}
Based on the magnetic flux density $B(t)$ it is possible to calculate the flux $\Phi(t)$:
\begin{align*}
\Phi(t) &= \iint_A \vec{B}(t) \cdot {\rm d}\vec{A} \\
&= \iint_A \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot {\rm d}A \\
&= \mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot A \\
\end{align*}
The changing flux $\Phi$ is now creating an induced electric voltage and current, which counteracts the initial change of the current.
This effect is called **Self Induction**. The induced electric voltage $u_{\rm ind}$ is given by:
\begin{align*}
u_{\rm ind} &= - N \cdot {{{\rm d} \Phi(t)}\over{{\rm d}t}} \\
&= - N \cdot {{{\rm d} (\mu_0 \mu_{\rm r} \cdot {{N \cdot i }\over {l}} \cdot A)}\over{{\rm d}t}} \\
&= - N \cdot \mu_0 \mu_{\rm r} \cdot {{N \cdot A }\over {l}} \cdot {{{\rm d}i}\over{{\rm d}t}} \\
\end{align*}
\begin{align*}
\boxed{ u_{\rm ind} = - \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \cdot {{{\rm d}i}\over{{\rm d}t}} \\ } \\
\text{for a long coil}
\end{align*}
The result means that the induced electric voltage $u_{\rm ind}$ is proportional to the change of the current ${{\rm d}\over{{\rm d}t}}i$.
The proportionality factor is also called **Self-inductance** $L$ (or often simply called inductance).
===== 4.5 Inductance =====
The inductance is another passive basic component of the electric circuit.
Besides the ohmic resistor $R$ and the capacitor $C$, the inductor $L$ is the lump component entailing the inductance.
Generally, the inductance is defined by:
\begin{align*}
\boxed{ L = \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\ }
\end{align*}
The inductance $L$ can also be described differently based on Lenz law $u_{\rm ind} = - {{\rm d}\over{{\rm d}t}}\Psi(t)$ :
\begin{align*}
L &= \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\
&= {{{d \Psi(t)}/{dt}}\over{{\rm d}i / {\rm d}t}} \\
\end{align*}
\begin{align*} \boxed{ L = {{ \Psi(t)}\over{i}} } \end{align*}
One can also consider an inductor a "conservative person": it does not like to see abrupt changes in the passing current.
It reacts to any change in the current with a counteracting voltage since the current change leads to a changing flux and - therefore - an induced voltage.
The shows an inductor in series with a resistor and a switch (any real switch also behaves as a capacitor, when open).
Once the simulation is started, the inductor directly counteracts the current, which is why the current only slowly increases.
The unit of the inductance is $\rm 1 ~Henry = 1 ~H = 1 {{Vs}\over{A}} = 1{{Wb}\over{A}} $
\\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCBMCmC0CcIAsA6ADAdgBwFYMYGYcd4CyCsQc0rlIq4wwAoANyiRoLSQ5qfo0anWkJBoUOZgBsQZAGzh5XAosiReQ9GghDmAJzmqoGo4u6bwaNMwIYVigWaX9x45gHc+cns4vuADyUCKDRKMAw1JmQOEABXZiCIykgwRywUsEReMEobIKRUqAxeJDJijBjckAAlROQ0NXlFJCyoeWzYhIL1UJCy+khGqsoAGXrOSqycOn54Sl5TbuQwGbAy2fAkFtiAS09vJwVwMEF6oZpUlKGTCFKaQGTCers1NBmCeFeFhpAnoLtFh05PBFhh6PdfswAPbgEDySwBLBgHTQEBYLS6KBYsSXdwwkLwtyI5FgAAmonQayxgjktIkaDOQA noborder}}
Mathematically the voltages can be described in the following way:
\begin{align*}
u_0 &= u_R &+ &u_L \\
&= i \cdot R & + & {{{\rm d}\Psi}\over{{\rm d}t}} \\
&= i \cdot R & + &L \cdot {{{\rm d}i}\over{{\rm d}t}} \\
\end{align*}
==== Inductance of different Components ====
=== Long Coil ===
In the last sub-chapter, the formula of a long coil was already investigated.
By these, the inductance of a long coil is
\begin{align*}
\boxed{L_{\rm long \; coil} = \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}}}
\end{align*}
=== Toroidal Coil ===
The toroidal coil was analyzed in the last chapter(see [[:electrical_engineering_2:the_magnetostatic_field#magnetic_field_strength_part_1toroidal_coil|magnetic Field Strength Part 1: Toroidal Coil]]).
Here, a rectangular intersection a assumed (see ).
{{drawio>SelfInductionToroCoil.svg}}
This leads to
\begin{align*} H(t) = {{N \cdot i}\over {l}} \end{align*}
with the mean magnetic path length (= length of the average field line) $l = \pi(r_{\rm o} + r_{\rm i})$:
\begin{align*} H(t) = {{N \cdot i}\over { \pi(r_{\rm o} + r_{\rm i})}} \end{align*}
The inductance $L$ can be calculated by
\begin{align*}
L_{\rm toroidal \; coil} &= {{ \Psi(t)}\over{i}} \\
&= {{ N \cdot \Phi(t)}\over{i}} \\
\end{align*}
With the magnetic flux density $B(t) = \mu_0 \mu_{\rm r} H(t) = \mu_0 \mu_{\rm r} {{i \cdot N }\over {l}}$ and the cross section $A = h (r_{\rm o} - r_{\rm i})$, we get:
\begin{align*}
\quad \quad L_{\rm toroidal \; coil} &= {{ N \cdot \mu_0 \mu_{\rm r} {{i \cdot N } \over { \pi(r_{\rm o} + r_{\rm i})}} \cdot h(r_{\rm o} - r_{\rm i})}\over{i}} \\
&= {{ N^2 \cdot \mu_0 \mu_{\rm r} \cdot h(r_{\rm o} - r_{\rm i})}\over{ \pi(r_{\rm o} + r_{\rm i})}} \\
\end{align*}
\begin{align*}
\boxed{ L_{\rm toroidal \; coil} = \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{ h(r_{\rm o} - r_{\rm i})}\over{ \pi(r_{\rm o} + r_{\rm i})}} }
\end{align*}
==== 6 Inductances in Circuits ====
Focus here: uncoupled inductors!
=== Series Circuits ===
Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff's mesh law ($i=\rm const$) the series circuit of inductions can be interpreted as a single current $i$ which generates multiple linked fluxes $\Psi$. Since the current must stay constant in the series circuit, the following applies for the equivalent inductor of a series connection of single ones:
\begin{align*} L_{\rm eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*}
A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$):
\begin{align*}
& u_{\rm eq} & = &u_1 & + &u_2 &+ ... \\
& L_{\rm eq} {{{\rm d}i_{\rm eq} }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i_{1} }\over{{\rm d}t}} & + &L_{2} {{di_{2} }\over{dt}} &+ ... \\
& L_{\rm eq} {{{\rm d}i }\over{{\rm d}t}} & = &L_{1} {{{\rm d}i }\over{{\rm d}t}} & + &L_{2} {{di }\over{dt}} &+ ... \\
& L_{\rm eq} & = &L_{1} & + &L_{2} &+ ... \\
\end{align*}
===Parallel Circuits ===
For parallel circuits, one can also start with the principles based on Kirchhoff's mesh law:
\begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*}
and Kirchhoff's nodal law:
\begin{align*} i_{\rm eq}= i_1 + i_2 + ... \\ \end{align*}
Here, the formula for the induced voltage has to be rearranged:
\begin{align*}
u_{\rm ind} &= L {{{\rm d}i}\over{{\rm d}t}} \quad \quad \quad \quad \bigg| \int(){\rm d}t \\
\int u_{\rm ind} {\rm d}t &= L \cdot i \\
i &= {{1}\over{L}} \cdot \int u_{\rm ind} {\rm d}t \\
\end{align*}
By this, we get:
\begin{align*}
i_{\rm eq} &=& i_1 &+& i_2 &+& ... \\
{{1}\over{L_{\rm eq}}} \cdot \int u_{\rm eq} {\rm d}t &=& {{1}\over{L_1}} \cdot \int u_{1} {\rm d}t &+& {{1}\over{L_2}} \cdot \int u_{2} {\rm d}t &+& ... \\
{{1}\over{L_{\rm eq}}} \cdot \int u {\rm d}t &=& {{1}\over{L_1}} \cdot \int u {\rm d}t &+& {{1}\over{L_2}} \cdot \int u {\rm d}t &+& ... \\
{{1}\over{L_{\rm eq}}} &=& {{1}\over{L_1}} &+& {{1}\over{L_2}} &+& ... \\
\end{align*}
The inductor behaves in the parallel and series circuit similar to the resistor.
===== Common pitfalls =====
* ...
===== Exercises =====
{{page>electrical_engineering_and_electronics:task_ljxf80q7vxywehqf_with_calculation&nofooter}}
{{page>electrical_engineering_and_electronics:task_unkkahm3u0v9azny_with_calculation&nofooter}}
{{fa>pencil?32}}
Calculate the inductance for the following settings
1. Cylindrical long air coil with $N=390$, winding diameter $d=3.0 ~\rm cm$ and length $l=18 ~\rm cm$
#@HiddenBegin_HTML~4511S,Solution~@#
\begin{align*}
L_1 &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\
&= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (390)^2 \cdot {{\pi \cdot (0.03~\rm m)^2 }\over {0.18 ~\rm m}}
\end{align*}
#@HiddenEnd_HTML~4511S,Solution ~@#
#@HiddenBegin_HTML~4511R,Result~@#
\begin{align*}
L_1 &= 3.0 ~\rm mH
\end{align*}
#@HiddenEnd_HTML~4511R,Result~@#
2. Similar coil geometry as explained in 1. , but with double the number of windings
#@HiddenBegin_HTML~4512S,Solution~@#
\begin{align*}
L_2 &= \mu_0 \mu_{\rm r} \cdot N_2^2 \cdot {{A }\over {l}} \\
&= \mu_0 \mu_{\rm r} \cdot (2\cdot N)^2 \cdot {{A }\over {l}} \\
&= \mu_0 \mu_{\rm r} \cdot 4\cdot N^2 \cdot {{A }\over {l}} \\
&= 4\cdot L_1 \\
\end{align*}
#@HiddenEnd_HTML~4512S,Solution ~@#
#@HiddenBegin_HTML~4512R,Result~@#
\begin{align*}
L_1 &= 12 ~\rm mH
\end{align*}
#@HiddenEnd_HTML~4512R,Result~@#
3. Two coils as explained in 1. in series
#@HiddenBegin_HTML~4513S,Solution~@#
multiple inductances in series just add up. One can think of adding more windings to the first coil in the formula..
#@HiddenEnd_HTML~4513S,Solution ~@#
#@HiddenBegin_HTML~4513R,Result~@#
\begin{align*}
L_1 &= 6.0 ~\rm mH
\end{align*}
#@HiddenEnd_HTML~4513R,Result~@#
4. Similar coil geometry and number of windings as explained in 1. , but with an iron core ($\mu_{\rm r}=1000$)
#@HiddenBegin_HTML~4514S,Solution~@#
\begin{align*}
L_4 &= \mu_0 \mu_{\rm r,4} \cdot N^2 \cdot {{A }\over {l}} \\
&= \mu_0 \cdot 1000 \cdot N^2 \cdot {{A }\over {l}} \\
&= 1000 \cdot L_4 \\
\end{align*}
#@HiddenEnd_HTML~4514S,Solution ~@#
#@HiddenBegin_HTML~4514R,Result~@#
\begin{align*}
L_4 &= 3.0 ~\rm H
\end{align*}
#@HiddenEnd_HTML~4514R,Result~@#
{{fa>pencil?32}}
A cylindrical air coil (length $l=40 ~\rm cm$, diameter $d=5.0 ~\rm cm$, and a number of windings $N=300$) passes a current of $30 ~\rm A$. The current shall be reduced linearly in $2.0 ~\rm ms$ down to $0.0 ~\rm A$.
What is the amount of the induced voltage $u_{\rm ind}$?
#@HiddenBegin_HTML~4521S,Solution~@#
The requested induced voltage can be derived by:
\begin{align*}
L &= \left|{{u_{\rm ind}}\over{{\rm d}i / {\rm d}t}}\right| \\
\rightarrow \left|u_{\rm ind}\right| &= L \cdot \left|{{{\rm d}i}\over{{\rm d}t}}\right| \\
&= L \cdot \left|{{\Delta i}\over{\Delta t}}\right| \\
\end{align*}
Therefore, we just need the inductance $L$, since ${{\Delta i}\over{\Delta t}}$ is defined as $30 ~\rm A$ per $2 ~\rm ms$:
\begin{align*}
L &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \\
\end{align*}
So, the result can be derived as:
\begin{align*}
\left|u_{\rm ind}\right| &= \mu_0 \mu_{\rm r} \cdot N^2 \cdot {{A }\over {l}} \cdot \left|{{\Delta i}\over{\Delta t}}\right| \\
&= 4\pi \cdot 10^{-7} {\rm {{H}\over{m}}} \cdot 1 \cdot (300)^2 \cdot {{\pi \cdot (0.05~\rm m)^2 }\over {0.40 ~\rm m}} \cdot {{30 ~\rm A}\over{2 ~\rm ms}}
\end{align*}
#@HiddenEnd_HTML~4521S,Solution ~@#
#@HiddenBegin_HTML~1,Result~@#
\begin{align*}
\left|u_{\rm ind}\right| &= 33 ~\rm V\end{align*}
#@HiddenEnd_HTML~1,Result~@#
{{fa>pencil?32}}
A coil with the inductance $L=20 ~\rm µH$ passes a current of $40 ~\rm A$. The current shall be reduced linearly in $5 ~\rm µs$ down to $0 ~\rm A$ (see ).
* What is the amount of the induced voltage $u_{\rm ind}$?
* Sketch the course of $u_{\rm ind}(t)$!
{{drawio>CircuitAndTiming.svg}} \\
===== Embedded resources =====
Explanation (video): ...
~~PAGEBREAK~~ ~~CLEARFIX~~