, , ,

Exercise E1 Coil in a magnetic Field
(written test, approx. 4 % of a 120-minute written test, SS2021)

A coil with $n = 300$ turns and a cross-sectional area $A = 600 ~\rm cm^2$ is located in a homogeneous magnetic field.
The rotation of the coil causes a sinusoidal change in the magnetic field in the coil with the frequency $f = 80~\rm Hz$.
The maximum value of the magnetic flux density in the coil is $\hat{B} = 2 \cdot 10^{-6} ~\rm {{Vs}\over{cm^2}}$.

ee2:rdz03rspbwusy7wk_question1.svg

Derive the formula for the voltage induced in the coil and calculate the voltage amplitude.

Path

The induced voltage $u_{\rm ind}$ is given by:

\begin{align*} u_{\rm ind} &= - {{{\rm d}\Psi(t)}\over{{\rm d}t}} \\ &= - n{{{\rm d}\Phi(t)}\over{{\rm d}t}} \\ \end{align*}

With $\Phi(t)= B(t) \cdot A$, where $A$ is the constant area of a single winding and $B(t)$ is the changing field through this winding.
Due to the rotation, the field changes as:

\begin{align*} B(t) &= \hat{B} \cdot \sin(\omega t + \varphi) \\ &= \hat{B} \cdot \sin(2\pi f \cdot t + \varphi) \\ \end{align*}

This leads to: \begin{align*} u_{\rm ind} &= - n{{{\rm d}}\over{{\rm d}t}}A \hat{B} \cdot \sin(2\pi f \cdot t + \varphi) \\ &= - n \cdot A \hat{B} \cdot 2\pi f \cdot \cos(2\pi \cdot f t + \varphi) \\ \end{align*}

The absolute value of the factor in front of the $\cos$ is the maximum induced voltage $\hat{U}_{\rm ind}$: \begin{align*} \hat{U}_{\rm ind} &= n \cdot A \hat{B} \cdot 2\pi f \\ &= 300 \cdot 0.06{~\rm m^2} \cdot 2 \cdot 10^{-2} ~\rm {{Vs}\over{m^2}} \cdot 2\pi \cdot 80 {{1}\over{\rm s}} \\ &= 180.95... {~\rm m^2} \cdot {{\rm Vs}\over{\rm m^2}} \cdot {{1}\over{\rm s}} \\ &= 180.95... {~\rm V} \\ \end{align*}

Result

\begin{align*} u_{\rm ind} = - 181 {~\rm V} \cdot \cos(503 {{1}\over{\rm s}} \cdot t ) \\ \end{align*}