

Atmel AVR4027: Tips and Tricks to Optimize
Your C Code for 8-bit AVR Microcontrollers

Features
• Atmel® AVR® core and Atmel AVR GCC introduction
• Tips and tricks to reduce code size
• Tips and tricks to reduce execution time
• Examples application

1 Introduction
AVR core is an advanced RISC architecture tuned for C code. It ensures the
development of good products with more features at less cost.

When talking about optimization, we usually refer to two aspects: code size and
code speed. Nowadays, C compilers have different optimization options to help
developers get an efficient code on either size or speed.

However, good C coding gives more opportunities for compilers to optimize the
code as desired. And in some cases, optimizing for one of the two aspects affects
or even causes degradation in the other, so a developer has to balance the two
according to their specific needs. An understanding of some tips and tricks about C
coding for an 8-bit AVR helps the developers to know where to focus in improving
code efficiency.

In this application note, the tips are based on avr-gcc (C compiler). However these
tips could be implemented in other compilers or with similar compiler options, and
vice versa.

8-bit Atmel
Microcontrollers

Application Note

Rev. 8453A-AVR-11/11

2 Atmel AVR4027
8453A-AVR-11/11

2 Knowing Atmel AVR core and Atmel AVR GCC
Before optimizing embedded systems software, it is necessary to have a good
understanding of how the AVR core is structured and what strategies the AVR GCC
uses to generate efficient code for this processor. Here we have a short introduction
of the features of AVR core and AVR GCC.

2.1 Atmel AVR 8-bit architecture
AVR uses Harvard architecture – with separate memories and buses for program and
data. It has a fast-access register file of 32 × 8 general purpose working registers with
a single clock cycle access time. The 32 working registers is one of the keys to
efficient C coding. These registers have the same function as the traditional
accumulator, except that there are 32 of them. The AVR arithmetic and logical
instructions work on these registers, hence they take up less instruction space. In one
clock cycle, AVR can feed two arbitrary registers from the register file to the ALU,
perform an operation, and write back the result to the register file.

Instructions in the program memory are executed with a single level pipelining. While
one instruction is being executed, the next instruction is pre-fetched from the program
memory. This concept enables instructions to be executed in every clock cycle. Most
AVR instructions have a single 16-bit word format. Every program memory address
contains a 16- or 32-bit instruction.

Please refer to “AVR CPU Core” section in device datasheet for more details.

2.2 AVR GCC
GCC stands for GNU Compiler Collection. When GCC is used for the AVR target, it is
commonly known as AVR GCC. The actual program “gcc” is prefixed with "avr-",
namely, “avr-gcc”.

AVR GCC provides several optimization levels. They are -O0, -O1, -O2, -O3 and -Os.
In each level, there are different optimization options enabled, except for -O0 which
means no optimization. Besides the options enabled in optimization levels, you can
also enable separate optimization options to get a specific optimization.

Please refer to the GNU Compiler Collection manual as below for a complete list of
optimization options and levels.

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options

Besides “avr-gcc”, it takes many other tools working together to produce the final
executable application for the AVR microcontroller. The group of tools is called a
toolchain. In this AVR toolchain, avr-libc serves as an important C Library which
provides many of the same functions found in a regular Standard C Library and many
additional library functions that is specific to an AVR.

The AVR Libc package provides a subset of the standard C library for Atmel AVR 8-
bit RISC microcontrollers. In addition, the library provides the basic startup code
needed by most applications.

Please check the link below for the manual of avr-libc,

http://www.nongnu.org/avr-libc/user-manual/

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options�
http://www.nongnu.org/avr-libc/user-manual/�

Atmel AVR4027

 3
8453A-AVR-11/11

2.3 Development platform
The example codes and testing results in this document are based on the following
platform and device,

1. Integrated Development Environment (IDE):
Atmel AVR Studio® 5 (Version: 5.0.1119).

2. AVR GCC 8-bit Toolchain Version:
AVR_8_bit_GNU_Toolchain_3.2.1_292 (gcc version 4.5.1).

3. Target Device:
Atmel ATmega88PA.

4 Atmel AVR4027
8453A-AVR-11/11

3 Tips and tricks to reduce code size
In this section, we list some tips about how to reduce code size. For each tip
description and sample code are given.

3.1 Tip #1 – Data types and sizes
Use the smallest applicable data type as possible. Evaluate your code and in
particular the data types. Reading an 8-bit (byte) value from a register only requires a
byte-sized variable and not a double-byte variable, thus saving code-space.

The size of data types on 8-bit AVR can be found in the <stdint.h> header file and is
summarized in Table 3-1.

Table 3-1. Data types on 8-bit AVR in <stdint.h>.
Data type Size

signed char / unsigned char int8_t / uint8_t 8-bit

signed int / unsigned int int16_t / uint16_t 16-bit

signed long / unsigned long int32_t / uint32_t 32-bit

signed long long / unsigned long long int64_t / uint64_t 64-bit
Be aware that certain compiler-switches can change this (avr-gcc -mint8 turns integer
data type to be 8-bit integer).

The two example codes in Table 3-2 show the effect of different data types and sizes.
The output from the avr-size utility shows the code space we used when this
application is built with -Os (optimize for size).

Table 3-2. Example of different data types and sizes.
 Unsigned int (16-bit) Unsigned char (8-bit)

C source code

#include <avr/io.h>

unsigned int readADC() {
 return ADCH;
};

int main(void)
{
 unsigned int mAdc = readADC();
}

#include <avr/io.h>

unsigned char readADC() {
 return ADCH;
};

int main(void)
{
 unsigned char mAdc = readADC();
}

AVR Memory Usage Program: 92 bytes (1.1% full) Program: 90 bytes (1.1% full)

Compiler optimization level -Os (optimize for size) -Os (optimize for size)
In the left example, we use the int (2-byte) data type as return value from the
readADC() function and in the temporary variable used to store the return value from
the readADC() function.

In the right example we are using char (1-byte) instead. The readout from the ADCH
register is only eight bits, and this means that a char is sufficient. Two bytes are
saved due to the return value of the function readADC() and the temporary variable in
main being changed from int (2-byte) to char (1-byte).

NOTE There is a startup code before running from main(). That’s why a simple C code takes
up about 90 bytes.

Atmel AVR4027

 5
8453A-AVR-11/11

3.2 Tip #2 – Global variables and local values
In most cases, the use of global variables is not recommended. Use local variables
whenever possible. If a variable is used only in a function, then it should be declared
inside the function as a local variable.

In theory, the choice of whether to declare a variable as a global or local variable
should be decided by how it is used.

If a global variable is declared, a unique address in the SRAM will be assigned to this
variable at program link time. Also accessing to a global variable will typically need
extra bytes (usually two bytes for a 16 bits long address) to get its address.

Local variables are preferably assigned to a register or allocated to stack if supported
when they are declared. As the function becomes active, the function’s local variables
become active as well. Once the function exits, the function’s local variables can be
removed.

In Table 3-3 there are two examples showing the effect of global variables and local
variables.

Table 3-3. Example of global variables and local variables.
 Global variables Local variables

C source code

#include <avr/io.h>

uint8_t global_1;

int main(void)
{
 global_1 = 0xAA;
 PORTB = global_1;
}

#include <avr/io.h>

int main(void)
{
 uint8_t local_1;

 local_1 = 0xAA;
 PORTB = local_1;
}

AVR Memory Usage

Program: 104 bytes (1.3% full)
(.text + .data + .bootloader)
Data: 1 byte (0.1% full)
(.data + .bss + .noinit)

Program: 84 bytes (1.0% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Compiler optimization level -Os (optimize for size) -Os (optimize for size)
In the left example, we have declared a byte-sized global variable. The output from
the avr-size utility shows that we use 104 bytes of code space and one byte of data
space with optimization level -Os (optimize for size).

In the right example, after we declared the variable inside main() function as local
variable, the code space is reduced to 84 bytes and no SRAM is used.

6 Atmel AVR4027
8453A-AVR-11/11

3.3 Tip #3 – Loop index
Loops are widely used in 8-bit AVR code. There are “while () { }” loop, “for ()” loop
and “do { } while ()” loop. If the -Os optimization option is enabled; the compiler will
optimize the loops automatically to have the same code size.

However we can still reduce the code size slightly. If we use a “do { } while ()” loop,
an increment or a decrement loop index generates different code size. Usually we
write our loops counting from zero to the maximum value (increment), but it is more
efficient to count the loop from the maximum value to zero (decrement).

That is because in an increment loop, a comparison instruction is needed to compare
the loop index with the maximum value in every loop to check if the loop index
reaches the maximum value.

When we use a decrement loop, this comparison is not needed any more because
the decremented result of the loop index will set the Z (zero) flag in SREG if it
reaches zero.

In Table 3-4 there are two examples showing the code generated by “do { } while ()”
loop with increment and decrement loop indices. The optimization level -Os (optimize
for size) is used here.

Table 3-4. Example of do { } while () loops with increment and decrement loop index.
 do{ }while() with increment loop index do{ }while() with decrement loop index

C source code

#include <avr/io.h>

int main(void)

{

 uint8_t local_1 = 0;

 do {

 PORTB ^= 0x01;

 local_1++;

 } while (local_1<100);

}

#include <avr/io.h>

int main(void)

{

 uint8_t local_1 = 100;

 do {

 PORTB ^= 0x01;

 local_1--;

 } while (local_1);

}

AVR Memory Usage

Program: 96 bytes (1.2% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Program: 94 bytes (1.1% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Compiler optimization level -Os (optimize for size) -Os (optimize for size)
To have a clear comparison in C code lines, this example is written like “do {count-- ;}
while (count);” and not like “do {} while (--count);” usually used in C books. The two
styles generate the same code.

Atmel AVR4027

 7
8453A-AVR-11/11

3.4 Tip #4 – Loop jamming
Loop jamming here refers to integrating the statements and operations from different
loops to fewer loops or to one loop, thus reduce the number of loops in the code.

In some cases, several loops are implemented one by one. And this may lead to a
long list of iterations. In this case, loop jamming may help to increase the code
efficiency by actually having the loops combined into one.

Loop jamming reduces code size and makes code run faster as well by eliminating
the loop iteration overhead. From the example in Table 3-5, we could see how loop
jamming works.

Table 3-5. Example of loop jamming.
 Separate loops Loop jamming

C source code

#include <avr/io.h>

int main(void)

{

 uint8_t i, total = 0;

 uint8_t tmp[10] = {0};

 for (i=0; i<10; i++) {

 tmp [i] = ADCH;

 }

 for (i=0; i<10; i++) {

 total += tmp[i];

 }

 UDR0 = total;

}

#include <avr/io.h>

int main(void)

{

 uint8_t i, total = 0;

 uint8_t tmp[10] = {0};

 for (i=0; i<10; i++) {

 tmp [i] = ADCH;

 total += tmp[i];

 }

 UDR0 = total;

}

AVR Memory Usage

Program: 164 bytes (2.0% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Program: 98 bytes (1.2% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Compiler optimization level -Os (optimize for size) -Os (optimize for size)

8 Atmel AVR4027
8453A-AVR-11/11

3.5 Tip #5 – Constants in program space
Many applications run out of SRAM, in which to store data, before they run out of
Flash. Constant global variables, tables or arrays which never change, should usually
be allocated to a read-only section (Flash or EEPROM on 8-bit AVR) and. This way
we can save precious SRAM space.

In this example we don’t use C keyword “const”. Declaring an object “const”
announces that its value will not be changed. “const” is used to tell the compiler that
the data is to be "read-only" and increases opportunities for optimization. It does not
identify where the data should be stored.

To allocate data into program space (read-only) and receive them from program
space, AVR-Libc provides a simple macro “PROGMEM” and a macro
“pgm_read_byte”. The PROGMEM macro and pgm_read_byte function are defined in
the <avr/pgmspace.h> system header file.

The following example in Table 3-6 show how we save SRAM by moving the global
string into program space.

Table 3-6. Example of constants in program space.
 Constants in data space Constants in program space

C source code

#include <avr/io.h>

uint8_t string[12] = {"hello
world!"};

int main(void)

{

 UDR0 = string[10];

}

#include <avr/io.h>

#include <avr/pgmspace.h>

uint8_t string[12] PROGMEM =
{"hello world!"};

int main(void)

{

 UDR0 =
pgm_read_byte(&string[10]);

}

AVR Memory Usage

Program: 122 bytes (1.5% full)
(.text + .data + .bootloader)
Data: 12 bytes (1.2% full)
(.data + .bss + .noinit)

Program: 102 bytes (1.2% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Compiler optimization level -Os (optimize for size) -Os (optimize for size)
After we allocate the constants into program space, we see that the program space
and data space are both reduced. However, there is a slight overhead when reading
back the data, because the function execution will be slower than reading data from
SRAM directly.

If the data stored in flash are used multiple times in the code, we get a lower size by
using a temporary variable instead of using the “pgm_read_byte” macro directly
several times.

There are more macros and functions in the <avr/pgmspace.h> system header file for
storing and retrieving different types of data to/from program space. Please check
avr-libc user manual for more details.

Atmel AVR4027

 9
8453A-AVR-11/11

3.6 Tip #6 – Access types: Static
For global data, use the static keyword whenever possible. If global variables are
declared with keyword static, they can be accessed only in the file in which they are
defined. It prevents an unplanned use of the variable (as an external variable) by the
code in other files.

On the other hand, local variables inside a function should be avoided being declared
as static. A “static” local variable’s value needs to be preserved between calls to the
function and the variable persists throughout the whole program. Thus it requires
permanent data space (SRAM) storage and extra codes to access it. It is similar to a
global variable except its scope is in the function where it’s defined.

A static function is easier to optimize, because its name is invisible outside of the file
in which it is declared and it will not be called from any other files.

If a static function is called only once in the file with optimization (-O1, -O2, -O3 and -
Os) enabled, the function will be optimized automatically by the compiler as an inline
function and no assembler code is outputted for this function. Please check the
example in Table 3-7 for the effect.

Table 3-7. Example of access types: static function.
 Global function (called once) Static function (called once)

C source code

#include <avr/io.h>

uint8_t string[12] = {"hello
world!"};

void USART_TX(uint8_t data);

int main(void)

{

 uint8_t i = 0;

 while (i<12) {

 USART_TX(string[i++]);

 }

}

void USART_TX(uint8_t data)

{

 while(!(UCSR0A&(1<<UDRE0)));

 UDR0 = data;

}

#include <avr/io.h>

uint8_t string[12] = {"hello
world!"};

static void USART_TX(uint8_t
data);

int main(void)

{

 uint8_t i = 0;

 while (i<12) {

 USART_TX(string[i++]);

 }

}

void USART_TX(uint8_t data)

{

 while(!(UCSR0A&(1<<UDRE0)));

 UDR0 = data;

}

AVR Memory Usage

Program: 152 bytes (1.9% full)
(.text + .data + .bootloader)
Data: 12 bytes (1.2% full)
(.data + .bss + .noinit)

Program: 140 bytes (1.7% full)
(.text + .data + .bootloader)
Data: 12 bytes (1.2% full)
(.data + .bss + .noinit)

Compiler optimization level -Os (optimize for size) -Os (optimize for size)

NOTE If the function is called multiple times, it will not be optimized to an inline function,
because this will generate more code than direct function calls.

10 Atmel AVR4027
8453A-AVR-11/11

3.7 Tip #7 – Low level assembly instructions
Well coded assembly instructions are always the best optimized code. One drawback
of assembly code is the non-portable syntax, so it’s not recommended for
programmers in most cases.

However, using assembly macros reduces the pain often associated with assembly
code, and it improves the readability and portability. Use macros instead of functions
for tasks that generates less than 2-3 lines assembly code. The example in Table 3-8
shows the code usage of assembly macro compared with using a function.

Table 3-8. Example of low level assembly instructions.
 Function Assembly macro

C source code

#include <avr/io.h>

void enable_usart_rx(void)

{

 UCSR0B |= 0x80;

};

int main(void)

{

 enable_usart_rx();

 while (1){

 }

}

#include <avr/io.h>

#define enable_usart_rx() \

__asm__ __volatile__ (\

 "lds r24,0x00C1" "\n\t" \

 "ori r24, 0x80" "\n\t" \

 "sts 0x00C1, r24" \

 ::)

int main(void)

{

 enable_usart_rx();

 while (1){

 }

}

AVR Memory Usage

Program: 90 bytes (1.1% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Program: 86 bytes (1.0% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Compiler optimization level -Os (optimize for size) -Os (optimize for size)
For more details about using assembly language with C in 8-bit AVR, please refer to
“Inline Assembler Cookbook” section in avr-libc user manual.

Atmel AVR4027

 11
8453A-AVR-11/11

4 Tips and tricks to reduce execution time
In this section, we list some tips about how to reduce execution time. For each tip,
some description and sample code are given.

4.1 Tip #8 – Data types and sizes
In addition to reducing code size, selecting a proper data type and size will reduce
execution time as well. For 8-bit AVR, accessing 8-bit (Byte) value is always the most
efficient way.

Please check the example in Table 4-1 for the difference of 8-bit and 16-bit variables.

Table 4-1. Example of data types and sizes.
 16-bit variable 8-bit variable

C source code

#include <avr/io.h>

int main(void)

{

 uint16_t local_1 = 10;

 do {

 PORTB ^= 0x80;

 } while (--local_1);

}

#include <avr/io.h>

int main(void)

{

 uint8_t local_1 = 10;

 do {

 PORTB ^= 0x80;

 } while (--local_1);

}

AVR Memory Usage

Program: 94 bytes (1.1% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Program: 92 bytes (1.1% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Cycle counter 90 79

Compiler optimization level -O2 -O2

NOTE The loop will be unrolled by compiler automatically with –O3 option. Then the loop will
be expanded into repeating operations indicated by the loop index, so for this
example there is no difference with –O3 option enabled.

12 Atmel AVR4027
8453A-AVR-11/11

4.2 Tip #9 – Conditional statement
Usually pre-decrement and post-decrement (or pre-increments and post-increments)
in normal code lines make no difference. For example, “i--;” and “--i;” simply generate
the same code. However, using these operators as loop indices and in conditional
statements make the generated code different.

As stated in Tip #3 – Loop index, using decrementing loop index results in a smaller
code size. This is also helpful to get a faster code in conditional statements.

Furthermore, pre-decrement and post-decrement also have different results. From the
examples in Table 4-2, we can see that faster code is generated with a pre-
decrement conditional statement. The cycle counter value here represents execution
time of the longest loop.

Table 4-2. Example of conditional statement.
 Post-decrements in conditional statement Pre-decrements in conditional statement

C source code

#include <avr/io.h>

int main(void)

{

 uint8_t loop_cnt = 9;

 do {

 if (loop_cnt--) {

 PORTC ^= 0x01;

 } else {

 PORTB ^= 0x01;

 loop_cnt = 9;

 }

 } while (1);

}

#include <avr/io.h>

int main(void)

{

 uint8_t loop_cnt = 10;

 do {

 if (--loop_cnt) {

 PORTC ^= 0x01;

 } else {

 PORTB ^= 0x01;

 loop_cnt = 10;

 }

 } while (1);

}

AVR Memory Usage

Program: 104 bytes (1.3% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Program: 102 bytes (1.2% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Cycle counter 75 61

Compiler optimization level -O3 -O3
The “loop_cnt” is assigned with different values in the two examples in Table 4-2 to
make sure the examples work the same: PORTC0 is toggled nine times while
POTRB0 is toggled once in each turn.

Atmel AVR4027

 13
8453A-AVR-11/11

4.3 Tip #10 – Unrolling loops
In some cases, we could unroll loops to speed up the code execution. This is
especially effective for short loops. After a loop is unrolled, there are no loop indices
to be tested and fewer branches are executed each round in the loop.

The example in Table 4-3 will toggle one port pin ten times.

Table 4-3. Example of unrolling loops.
 Loops Unrolling loops

C source code

#include <avr/io.h>

int main(void)

{

 uint8_t loop_cnt = 10;

 do {

 PORTB ^= 0x01;

 } while (--loop_cnt);

}

#include <avr/io.h>

int main(void)

{

 PORTB ^= 0x01;

 PORTB ^= 0x01;

 PORTB ^= 0x01;

 PORTB ^= 0x01;

 PORTB ^= 0x01;

 PORTB ^= 0x01;

 PORTB ^= 0x01;

 PORTB ^= 0x01;

 PORTB ^= 0x01;

 PORTB ^= 0x01;

}

AVR Memory Usage

Program: 94 bytes (1.5% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.1% full)
(.data + .bss + .noinit)

Program: 142 bytes (1.7% full)
(.text + .data + .bootloader)
Data: 0 bytes (0.0% full)
(.data + .bss + .noinit)

Cycle counter 80 50

Compiler optimization level -O2 -O2
By unrolling the do { } while () loop, we significantly speed up the code execution
from 80 clock cycles to 50 clock cycles.

Be aware that the code size is increased from 94 bytes to 142 bytes after unrolling
the loop. This is also an example to show the tradeoff between speed and size
optimization.

NOTE If -O3 option is enabled in this example, the compiler will unroll the loop automatically
and generate the same code as unrolling loop manually.

4.4 Tip #11 – Control flow: If-else and switch-case
“if-else” and “switch-case” are widely used in C code; a proper organization of the
branches can reduce the execution time.

For “if-else”, always put the most probable conditions in the first place. Then the
following conditions are less likely to be executed. Thus time is saved for most cases.

Using “switch-case” may eliminate the drawbacks of “if-else”, because for a “switch-
case”, the compiler usually generates lookup tables with index and jump to the correct
place directly.

14 Atmel AVR4027
8453A-AVR-11/11

If it’s hard to use “switch-case”, we can divide the “if-else” branches into smaller sub-
branches. This method reduces the executions for a worst case condition. In the
example below, we get data from ADC and then send data through USART.
“ad_result <= 240” is the worst case.

Table 4-4. Example of if-else sub-branch.
 if-else branch if-else sub-branch

C source code

#include <avr/io.h>

uint8_t ad_result;

uint8_t readADC() {
 return ADCH;
};

void send(uint8_t data){
 UDR0 = data;
};

int main(void)
{
 uint8_t output;
 ad_result = readADC();

 if(ad_result <= 30){
 output = 0x6C;
 }else if(ad_result <=
60){
 output = 0x6E;
 }else if(ad_result <=
90){
 output = 0x68;
 }else if(ad_result <=
120){
 output = 0x4C;
 }else if(ad_result <=
150){
 output = 0x4E;
 }else if(ad_result <=
180){
 output = 0x48;
 }else if(ad_result <=
210){
 output = 0x57;
 }else if(ad_result <=
240){
 output = 0x45;
 }
 send(output);
}

int main(void)
{
 uint8_t output;
 ad_result = readADC();

 if (ad_result <= 120){
 if (ad_result <= 60){
 if (ad_result <= 30){
 output = 0x6C;
 }
 else{
 output = 0x6E;
 }
 }
 else{
 if (ad_result <= 90){
 output = 0x68;
 }
 else{
 output = 0x4C;
 }
 }
 }
 else{
 if (ad_result <= 180){
 if (ad_result <= 150){
 output = 0x4E;
 }
 else{
 output = 0x48;
 }
 }
 else{
 if (ad_result <= 210){
 output = 0x57;
 }
 else{
 output = 0x45;
 }
 }
 }
 send(output);

}

AVR Memory Usage

Program: 198 bytes (2.4% full)
(.text + .data + .bootloader)
Data: 1 byte (0.1% full)
(.data + .bss + .noinit)

Program: 226 bytes (2.8% full)
(.text + .data + .bootloader)
Data: 1 byte (0.1% full)
(.data + .bss + .noinit)

Cycle counter 58 (for worst case) 48 (for worst case)

Compiler optimization level -O3 -O3
We can see it requires less time to reach the branch in the worst case. We could also
note that the code size is increased. Thus we should balance the result according to
specific requirement on size or speed.

Atmel AVR4027

 15
8453A-AVR-11/11

5 Example application and test result
An example application is used to show the effect of tips and tricks mentioned above.
Size optimization -s option is enabled in this example.

Several (not all) tips and tricks are used to optimize this example application.

In this example, one ADC channel is used to sample the input and the result is sent
out through USART every five second. If the ADC result is out of range, alarm is sent
out for 30 seconds before the application is locked in error state. In the rest of the
main loop, the device is put in power save mode.

The speed and size optimization results of sample application before optimization and
after optimization are listed in Table 5-1.

Table 5-1. Example application speed and size optimization result.
Test Items Before optimization After optimization Test result

Code size 1444 bytes 630 bytes -56.5%

Data size 25 bytes 0 bytes -100%

Execution speed (1) 3.88ms 2.6ms -33.0%

Note: 1. One loop including five ADC samples and one USART transmission.

16 Atmel AVR4027
8453A-AVR-11/11

6 Conclusion
In this document, we have listed some tips and tricks about C code efficiency in size
and speed. Thanks to the modern C compilers, they are smart in invoking different
optimization options automatically in different cases. However, no compiler knows the
code better than the developer, so a good coding is always important.

As shown in the examples, optimizing one aspect may have an effect on the other.
We need a balance between code size and speed based on our specific needs.

Although we have these tips and tricks for C code optimization, for a better usage of
them, a good understanding of the device and compiler you are working on is quite
necessary. And definitely there are other skills and methods to optimize the code
efficiency in different application cases.

Atmel AVR4027

 17
8453A-AVR-11/11

7 Table of contents
Features... 1
1 Introduction .. 1
2 Knowing Atmel AVR core and Atmel AVR GCC 2

2.1 Atmel AVR 8-bit architecture ... 2
2.2 AVR GCC .. 2
2.3 Development platform ... 3

3 Tips and tricks to reduce code size ... 4
3.1 Tip #1 – Data types and sizes ... 4
3.2 Tip #2 – Global variables and local values.. 5
3.3 Tip #3 – Loop index... 6
3.4 Tip #4 – Loop jamming.. 7
3.5 Tip #5 – Constants in program space ... 8
3.6 Tip #6 – Access types: Static .. 9
3.7 Tip #7 – Low level assembly instructions.. 10

4 Tips and tricks to reduce execution time..................................... 11
4.1 Tip #8 – Data types and sizes ... 11
4.2 Tip #9 – Conditional statement.. 12
4.3 Tip #10 – Unrolling loops... 13
4.4 Tip #11 – Control flow: If-else and switch-case... 13

5 Example application and test result ... 15
6 Conclusion ... 16
7 Table of contents ... 17

8453A-AVR-11/11

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
16F, Shin Osaki Kangyo Bldg.
1-6-4 Osaki Shinagawa-ku
Tokyo 104-0032
JAPAN
Tel: (+81) 3-6417-0300
Fax: (+81) 3-6417-0370

 © 2011 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

http://www2.atmel.com/�

	1 Introduction
	2 Knowing Atmel AVR core and Atmel AVR GCC
	2.1 Atmel AVR 8-bit architecture
	2.2 AVR GCC
	2.3 Development platform

	3 Tips and tricks to reduce code size
	3.1 Tip #1 – Data types and sizes
	3.2 Tip #2 – Global variables and local values
	3.3 Tip #3 – Loop index
	3.4 Tip #4 – Loop jamming
	3.5 Tip #5 – Constants in program space
	3.6 Tip #6 – Access types: Static
	3.7 Tip #7 – Low level assembly instructions

	4 Tips and tricks to reduce execution time
	4.1 Tip #8 – Data types and sizes
	4.2 Tip #9 – Conditional statement
	4.3 Tip #10 – Unrolling loops
	4.4 Tip #11 – Control flow: If-else and switch-case

	5 Example application and test result
	6 Conclusion
	7 Table of contents

