

AVR315: Using the TWI module as I2C master

Features
• C-code driver for TWI master
• Compatible with Philips' I2C protocol
• Uses the hardware TWI module
• Interrupt driven transmission
• Supports both Standard mode and Fast mode

Introduction
The Two Wire serial Interface (TWI) is compatible with Philips' I2C protocol. The
bus was developed to allow simple, robust and cost effective communication
between integrated circuits in electronics. The strengths of the TWI bus includes
the capability of addressing up to 128 devices on the same bus, arbitration, and the
possibility to have multiple masters on the bus.

A hardware TWI module is included in most of the AVR devices available.

This application note describes a TWI master implementation, in form of a full-
featured driver and an example of usage for this driver. The driver handles
transmission according to both Standard mode (<100kbps) and Fast mode
(<400kbps).

8-bit
Microcontrollers

Application Note

Rev. 2564B-AVR-09/04

2 AVR315
2564B-AVR-09/04

Theory
This section gives a short description of the TWI interface in general and the TWI
module on the megaAVR’s. For more detailed information refer to the datasheets.

Two-wire serial Interface The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller
applications. The TWI protocol allows the systems designer to interconnect up to 128
individually addressable devices using only two bi-directional bus lines, one for clock
(SCL) and one for data (SDA). The only external hardware needed to implement the
bus is a single pull-up resistor for each of the TWI bus lines. All devices connected to
the bus have individual addresses, and mechanisms for resolving bus contention are
inherent in the TWI protocol.

Figure 1. TWI Bus Interconnection.

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

VCC

The TWI bus is a multi-master bus where one or more devices, capable of taking
control of the bus, can be connected. Only Master devices can drive both the SCL
and SDA lines while a Slave device is only allowed to issue data on the SDA line.

Data transfer is always initiated by a Bus Master device. A high to low transition on
the SDA line while SCL is high is defined to be a START condition or a repeated start
condition.

Figure 2. TWI Address and Data Packet Format

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP

 AVR315

 3

2564B-AVR-09/04

A START condition is always followed by the (unique) 7-bit slave address and then by
a Data Direction bit. The Slave device addressed now acknowledges to the Master by
holding SDA low for one clock cycle. If the Master does not receive any acknowledge
the transfer is terminated. Depending of the Data Direction bit, the Master or Slave
now transmits 8-bit of data on the SDA line. The receiving device then acknowledges
the data. Multiple bytes can be transferred in one direction before a repeated START
or a STOP condition is issued by the Master. The transfer is terminated when the
Master issues a STOP condition. A STOP condition is defined by a low to high
transition on the SDA line while the SCL is high.

If a Slave device cannot handle incoming data until it has performed some other
function, it can hold SCL low to force the Master into a wait-state.

All data packets transmitted on the TWI bus are 9 bits long, consisting of one data
byte and an acknowledge bit. During a data transfer, the master generates the clock
and the START and STOP conditions, while the receiver is responsible for
acknowledging the reception. An Acknowledge (ACK) is signaled by the receiver
pulling the SDA line low during the ninth SCL cycle. If the receiver leaves the SDA
line high, a NACK is signaled.

The AVR TWI Module The TWI module is comprised of several sub modules, as shown in Figure 3. All
registers drawn in a thick line are accessible through the AVR data bus.

Figure 3. Overview of the TWI module in the AVR devices.

T
W

I U
ni

t

Address Register
(TWAR)

Address Match Unit

Address Comparator

Control Unit

Control Register
(TWCR)

Status Register
(TWSR)

State Machine and
Status control

SCL

Slew-rate
Control

Spike
Filter

SDA

Slew-rate
Control

Spike
Filter

Bit Rate Generator

Bit Rate Register
(TWBR)

Prescaler

Bus Interface Unit

START / STOP
Control

Arbitration detection Ack

Spike Suppression

Address/Data Shift
Register (TWDR)

4 AVR315
2564B-AVR-09/04

The AVR TWI module can operate in both Master and Slave mode. The mode of
operation is distinguished by the TWI status codes in the TWI Status Register
(TWSR) and by the use of certain bits in the TWI Control Register (TWCR).

Control Unit

A set of predefined status codes covers the different states that the TWI can be in
when a TWI event occurs. The status codes are divided in Master and Slave codes
and further in receive and transmit related codes. Status codes for Bus Error and Idle
also exist.

The TWI module operates as a state machine and is event driven: if a START
CONDITION followed by a TWI address matches the address in the Slave’s TWI
Address Register (TWAR) the TWINT flag is set, resulting in the execution of the
corresponding interrupt (if Global Interrupt and TWI interrupts are enabled). The
firmware of the Slave responds by reading the status code in TWSR and responding
accordingly. All TWI events will set the TWINT flag, and the firmware must respond
based on the status in TWSR.

As long as the TWINT Flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition
• After the TWI has transmitted SLA+R/W
• After the TWI has transmitted an address byte
• After the TWI has lost arbitration
• After the TWI has been addressed by own Slave address or general call
• After the TWI has received a data byte
• After a STOP or REPEATED START has been received while still addressed as a

Slave.
• When a bus error has occurred due to an illegal START or STOP condition

The Bite Rate Generator unit controls the period of SCL when operating in a Master
mode. The SCL period is controlled by settings in the TWI Bit Rate Register (TWBR)
and the Prescaler bits in the TWI Status Register (TWSR). Slave operation does not
depend on Bit Rate or Prescaler settings, but the CPU clock frequency in the Slave
must be at least 16 times higher than the SCL frequency. Note that Slaves may
prolong the SCL low period, thereby reducing the average TWI bus clock frequency.
The SCL frequency is generated according to the Equation 1 .

Bit Rate Generator

Equation 1.

TWPSTWBR
frequencyClockCPUfrequencySCL

4)(216 ⋅+
=

• TWBR = Value of the TWI Bit Rate Register
• TWPS = Value of the prescaler bits in the TWI Status Register
TWBR should be 10 or higher if the TWI operates in Master mode. If TWBR is lower
than 10, the Master may produce an incorrect output on SDA and SCL for the
reminder of the byte.

TWPS is located in TWISR which is the same register as the TWI Status bits. TWPS
should therefore always be set to 0 to simplify the handling of the TWI Status bits.
Use TWBR to achieve the needed speed on the SCL. Table 1 shows a selection of
pre calculated TWBR values based on CPU and SCL frequencies.

 AVR315

 5

2564B-AVR-09/04

Table 1. CPU and SCL frequencies versus Bit Rate Generator register settings.
CPU Clock frequency [MHz] TWBR TWPS SCL frequency [kHz]

16 12 0 400

16 72 0 100

14.4 10 0 400

14.4 64 0 100

12 10 0 ~333

12 52 0 100

8 10 0 ~222

8 32 0 100

4 12 0 100

3.6 10 0 100

2 10 0 ~55

1 10 0 ~28

Both TWI lines (SDA and SCL) are bi-directional, therefore outputs connected to the
TWI bus must be of an open-drain or an open-collector type. Each line must be
connected to the supply voltage via a pull-up resistor. A line is then logic high when
none of the connected devices drives the line, and logic low if one or more is drives
the line low.

SCL and SDA Pins

The output drivers contain a slew-rate limiter. The input stages contain a spike
suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in
the AVR pads can be enabled by setting the PORT bits corresponding to the SCL and
SDA pins, as explained in the I/O Port section. The internal pull-ups can in some
systems eliminate the need for external ones.

Figure 4 shows how to connect the TWI units to the TWI bus. The value of Rp
depends on VCC and the bus capacitance (typically 4.7 k).

Figure 4. TWI connection.

TWI Slave
TWI Slave

TWI Master TWI Slave

Vcc

SCL

SDA

Rp

6 AVR315
2564B-AVR-09/04

The Address Match unit is only used in slave mode, and checks if the received
address bytes match the 7-bit address in the TWI Address Register (TWAR). Upon an
address match, the Control Unit is informed, allowing correct action to be taken. The
TWI may or may not acknowledge its address, depending on settings in the TWCR.

Address Match Unit

Although the clock system to the TWI is turned off in all sleep modes, the interface
can still acknowledge its own Slave address or the general call address by using the
TWI Bus clock as a clock source. The part will then wake up from sleep and the TWI
will hold the SCL clock low during the wake up and until the TWINT Flag is cleared.

This unit contains the Data and Address Shift Register (TWDR), a START/STOP
Controller and Arbitration detection hardware. The TWDR contains the address or
data bytes to be transmitted, or the address or data bytes received. In addition it also
contains a register containing the (N)ACK bit to be transmitted or received.

Bus Interface Unit

The START/STOP Controller is responsible for generation and detection of START,
REPEATED START, and STOP conditions. The START/STOP controller is able to
detect START and STOP conditions even when the AVR MCU is in one of the sleep
modes, enabling the MCU to wake up if addressed by a Master. If the TWI has
initiated a transmission as Master, the Arbitration Detection hardware continuously
monitors the transmission trying to determine if arbitration is in process. If the TWI
has lost an arbitration, the Control Unit is informed. Correct action can then be taken
and appropriate status codes generated.

Implementation
The implemented code in this application note is a pure master driver. The TWI
modules also support slave operation. See “AVR311 TWI Slave Implementation” for a
sample of a slave driver. The master and slave drivers could be merged to one
combined master and slave driver, but this is not in the scope of this application note.

The master driver c-code consists of three files.

• TWI_Master.c
• TWI_Master.h
• Main.c
There is an example on how to use the driver in the main.c file. The TWI_Master.h file
must be included in the main application and contains all function declarations, a
define of the Bit Rate Register (TWBR) and defines for all TWI status codes. The
TWBR must be set according to the description earlier in this application note. The
TWI status code defines can be used to evaluate error messages and to take
appropriate actions. The file TWI_Master.c contains all the driver functions.

Functions The driver consists of the TWI Interrupt Service Routine and six functions. All
functions are available for use outside the driver file scope. Some of them are
however also used internally by the driver it self. All functions in the driver are listed in
Table 2. The actual code sizes for the functions, compiled with the IAR compiler are
listed in Table 4.

 AVR315

 7

2564B-AVR-09/04

Table 2. Description of functions in the TWI Master driver.
Function name Description
void TWI_Master_Initialise() Call this function to set up the TWI master to its initial standby state.

Remember to enable interrupts from the main application after
initializing the TWI.

void TWI_Start_Transceiver_with_Data

(uchar *message, uchar messageSize)
Call this function to send a prepared message. The first byte must
contain the slave address and the read/write bit. Consecutive bytes
contain the data to be sent, or empty locations for data to be read from
the slave. Also include how many bytes that should be sent/read
including the address byte. The function will hold execution (loop) until
the TWI_ISR has completed with the previous operation, then initialize
the next operation and return.

void TWI_Start_Transceiver() Call this function to resend the last message. The driver will reuse the
data previously put in the transceiver buffers. The function will hold
execution (loop) until the TWI_ISR has completed with the previous
operation, then initialize the next operation and return.

uchar TWI_Transceiver_Busy() Call this function to test if the TWI_ISR is busy transmitting.
uchar TWI_Get_State_Info() Call this function to fetch the state information of the previous

operation. The function will hold execution (loop) until the TWI_ISR
has completed with the previous operation. If there was an error, then
the function will return the TWI State code.

uchar TWI_Get_Data_From_Transceiver

(uchar *message, uchar messageSize)
Call this function to read out the requested data from the TWI
transceiver buffer. I.e. first call TWI_Start_Transceiver to send a
request for data to the slave. Then Run this function to collect the data
when they have arrived. Include a pointer to where to place the data
and the number of bytes requested (including the address field) in the
function call. The function will hold execution (loop) until the TWI_ISR
has completed with the previous operation, before reading out the data
and returning. If there was an error in the previous transmission the
function will return the TWI error code.

__interrupt void TWI_ISR() This function is the Interrupt Service Routine (ISR), and automatically
called when the TWI interrupt is triggered; that is whenever a TWI
event has occurred. This function should be called directly from the
main application.

Table 3. Description of the driver register byte containing status information from the
last transceiver operation. Available as bit fields within a byte.

TWI_statusReg Description
TWI_statusReg.lastTransOK Set to 1 when an operation has completed

successfully.

8 AVR315
2564B-AVR-09/04

Table 4. Code sizes with the IAR 3.10 compiler.
TWI Master functions [bytes]
TWI_Master_Initialise() 14
TWI_Transceiver_Busy() 6
TWI_Get_State_Info() 12
TWI_Start_Transceiver_With_Data() 72
TWI_Start_Transceiver() 8
TWI_Get_Data_From_Transceiver() 50
TWI_ISR() 194

 356

Figure 5 shows a flowchart of the process of sending and requesting data over the
TWI interface through the drivers. Data is passed through parameters to the functions
while the status of an operation is available trough a global status variable. Figure 6
contains the flowchart for the TWI driver itself. A more detailed description of the
actions for each event/state in the TWI Interrupt Service Routine can be found in a
flowchart in Figure 7. In Figure 7 the left column contains the different states/events
the TWI state machine can be in when entering the Interrupt. A case switch executes
the different actions dependant on the cause of the interrupt call.

The Transceiver function copies the complete message into the transmission buffer.
Then it enables the TWI interrupt to initiate the transmission. The Interrupt then takes
care of the complete transmission and disables it self when the transmission is
completed, or if an error state occurs. The driver can this way poll the interrupt enable
bit to check if a transmission is on going. The main application is only allowed to
access the global transceiver variables while the TWI transceiver is not busy. The
interrupt stores eventual error states in a variable that is available for the main
application through a function call.

 AVR315

 9

2564B-AVR-09/04

Figure 5. Calling the TWI driver from the application.

Return

Send data

Prepare transmission
buffer with slave

address, R/W bit and data
to send

Call Transeiver with
pointer to buffer and

number of bytes
to send

Do something else
while waiting for TWI

transmission to
complete

When complete, check
statusReg to se if

transmission went ok
or if special actions

must be taken

Prepare transmission
buffer with slave address

and R/W bit.

Call Transeiver with
pointer to buffer and

number of bytes
to request

Do something else
while waiting for TWI

reception to
complete

Call GetData to check if
reception went ok,

and read out received
data, or if special

actions must be taken

Request data

Return

Figure 6. TWI driver functions.

Transceiver
operation completed

with success?

TWI Start Transceiver
with Data

Wait until TWI Interrupt
is disabled

Copy transmit buffer
and message size, to
internal driver buffer

Enable TWI interrupt, init-
alise a START condition

TWI Interrupt

Return

TWI state machine
taking care of the

complete
transmission/

reception

Return

Disables it self when
transmission completed
or error state detected

TWI Get Data From
Transceiver

Wait until TWI Interrupt
is disabled

Copy data from internal
driver buffer

Return (Transceiver
operation completed with

success?)

TWI Get State Info

Wait until TWI Interrupt
is disabled

Return (TWI_state)

Clear statusReg &
TWIstate

No

Yes

10 AVR315
2564B-AVR-09/04

Figure 7. TWI interrupt service routine
TWI Interrupt

START has been
transmitted

Repeated START has
been transmitted

Return

buffer pointer at
 the end?

Reset bufferPointer

Disable TWI interrupt,
initalise a STOP condition
and clear interrupt flag

Clear TWI interrupt flag

Copy data from current
buffer position to data

register. Post incr pointer.

No

Yes

SLA+W has been
tramsmitted and
ACK received

Data byte has been
tramsmitted and
ACK received

SLA+R has been
tramsmitted and
ACK received

Data byte has been
received and

ACK tramsmitted

buffer
pointer position at
byte before the

end?

Intialise a NACK after
reception and clear
TWI interrupt flag

Intialise a ACK after
reception and clear
TWI interrupt flag

Copy from data register to
current buffer position.

Post incr pointer.

Yes No

Data byte has been
received and

NACK tramsmitted

Disable TWI interrupt,
initalise a STOP condition
and clear interrupt flag

Arbitration lost

Initalise a RESTART
condition and clear
TWI interrupt flag

SLA+W/R has been
tramsmitted and
NACK received

Data byte has been
tramsmitted and
NACK received

Bus error due to an illegal
START or STOP condition

Store TWI state
information

Disable TWI interrupt

Error States

Set Success bit
in StatusReg

Set Success bit
in StatusReg

Copy from data register to
current buffer position.

Disclaimer

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET
FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY
WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR
INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of
the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Atmel’s products are not intended, authorized, or warranted
for use as components in applications intended to support or sustain life.

© Atmel Corporation 2004. All rights reserved. Atmel®, logo and combinations thereof, AVR®, and AVR Studio® are registered trademarks,
and Everywhere You Are™ are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of
others.

2564B-AVR-09/04

	AVR315: Using the TWI module as I2C master
	Features
	Introduction
	Theory
	Two-wire serial Interface
	The AVR TWI Module
	Control Unit
	Bit Rate Generator
	SCL and SDA Pins
	Address Match Unit
	Bus Interface Unit

	Implementation
	Functions

	Disclaimer

