
Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Dave Stewart
Director of Software Engineering
InHand Electronics
Rockville, Maryland
dstewart@inhand.com
http://www.inhand.com

Most Common Mistakes with
Real-Time Software Development

Embedded Systems Conference
Boston, September 2006

Class ESC 401/421

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Why this presentation?

Novices and Experts
in both industry and university,

make the same mistakes over and over again.

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

The Order

The order is subjective,
based on personal observations
when using the following criteria:

What is the effect
of the mistake on
reliability?

How often is the
mistake made?

is highest on list

What is the bottom
line regarding

Time and Money?

Does the mistake
increase complexity

of the code?

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

The Order is Not Really Important
What is important is that the mistake is on the list!

Correcting just ONE mistake
can save thousands of dollars

or significantly improve
quality and robustness of software.

Correcting SEVERAL mistakes
can lead to savings and improvements

that are incalculable!

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

“My Problem is Different”

Learn from experience of others

Focus on similarities, not differences

Rarely, if ever, is entire problem different

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Delays implemented as empty loops

Use RTOS timing mechanisms

Build your own mechanism
that automatically profiles CPU

Poll the count-down value of a timer

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Tools choice driven by marketing hype,
not by evaluation of technical needs

Select tools based on your own
technical needs, not just because
everybody else is using them.

Spending $2,000 for the right
tool can save $100,000 in labor.

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Large if-then-else and case statements
Usually a sign of implementation without design.

Instead, Design First!
Use Finite State Machines to reduce complexity.

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Documentation written after
implementation

Start implementation with documentation
(the design document)

Revise documentation interactively; this serves as a
sanity check to ensure that the code implements
everything defined in it.

Document is written when functionality is fresh in
programmer’s mind.

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Interactive and incomplete
test programs

Simulate input devices with known patterns

Always test the entire application all the time

Nightly extensive self-tests

Create non-interactive test programs
Instead:

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Software Engineers
Don’t Participate in
Hardware Design

Leads to over-designing the system
Instead, promote Hardware/Software Co-Design

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

No Simulators of
Target Application

Faster development
Better debugging tools
Multiple programmers
Customer feedback
Deeper understanding
Safer and cheaper!

Using a simulator:

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Error detection and handling is an after-thought,
and implemented through trial and error

Treat errors as inputs, and
error handling as a state

Error detection and handling
must be specified and designed
prior to implementation.

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Generalizations
based on a single architecture

Develop code on multiple architectures simultaneously
Don’t generalize everything!

Create configurable modules for whatever
is different between architectures

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

3*x or x+x+x

Do not perform fine-grain optimizations unless needed,
and only during final stages of implementation

Measure performance after each optimization
to ensure it is in fact an optimization

Do coarse-grain optimization during design phase

Optimizing at the Wrong Time

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

To perform good coarse-grain
optimization, must analyze hardware
peculiarities before starting

Profile CPU before writing
programs for it, to identify
and understand anomalies.

float+byte: 308 usec

Byte+byte: 7 usec
16-bit+16-bit: 12 usec
32-bit+32-bit: 28 usec
float+float: 137 usec

On a 9 MHz Z180:

Better understanding of
hardware peculiarities will lead
to better designs.

Optimizing at the Wrong Time

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Reusing code not designed for reuse

Don’t waste time trying to use old code
that was not designed for reuse.
Instead, re-design it using proven
techniques for software reuse.

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Using blocking forms of
message passing

Schedulable bound: The maximum utilization of the processor for
which a task set is guaranteed to still meet all its timing
constraints. Ideally, schedulable bound is 100%. In practice, it is
lower than that.

Problems:
• Reduced real-time schedulable bound
• Significant overhead
• Results in lots of aperiodic servers
• Forces tight synchronization
• Potential for deadlock in closed-loop systems
• Additional complexity for 1:many communication

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Minimize inter-module
communication and synchronization

Solution:

Use a shared-memory based protocol,
such as state variable communication,
publish/subscribe, or
non-blocking message passing.

If blocking is unavoidable, use proper
synchronization techniques to prevent
priority inversion and deadlock,
such as priority ceiling protocol.

Using blocking forms of
message passing

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

No memory analysis
during design

Compute memory usage during design phase.

Don’t forget about memory used by string constants.

For code, estimate a budget for each module.

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Improper use of
Global Variables!

Problem -- reduces maintainability of software:
• Global variables (even static ones) are shared.
• Limits expandability by preventing replication of modules.
• Causes many inter-module dependencies.

Solution -- eliminate (most) global variables:
• Use proper data abstraction and encapsulation
• Use shared memory mechanisms to control access,

such as State Variable Table, Publish/Subscribe, etc.

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Interrupts are an enemy to real-time predictability:

• Always have high priority
• Force a need for global variables
• Cannot be scheduled
• Difficult to analyze
• Execute within wrong context
• Operate in kernel space
• Priority inversion
• Difficult to debug

Indiscriminate use of
interrupts

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Instead, minimize use of interrupts whenever possible

Periodic polling threads are more desirable than
interrupts because they are schedulable

Complex code should be replaced by a signal
to an aperiodic server

Only use real-time analysis methods
that take interrupt handling into account

Indiscriminate use of
interrupts

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Interrupts: 20 to 50 µsec per interrupt
Threads: 50 to 100 µsec per context switch
Non-preemptive processes: 10 to 30 µsec per switch

A real-time executive with non-preemptive periodic
processes can sometimes provide more predictable
results and better utilization than using interrupts.

Indiscriminate use of
interrupts

Myth: Interrupts save CPU time over processes
Reality: Not usually in real-time systems

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Interrupts save a bit of overhead, but
at the huge cost of reducing the schedulable bound
and increasing the possibility of race conditions

Saving 10% overhead by using interrupts might
reduce schedulable bound by 30% and increase
overhead of using shared variables by 20%!

Indiscriminate use of
interrupts

Myth: Interrupts save CPU time over processes
Reality: Not usually in real-time systems

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Poor Software Design Diagrams

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

No Software Design Diagrams

typedef struct _def_t {
struct _def_t *next;
struct _def_t *prev;
char name[8];
short loval;
short hival;

} def_t;

typedef struct _xyz_t {
int i;
float f;
short s[2];
unsigned char b[8];

} xyz_t;

typedef struct _abc_t {
def_t *def;
xyz_t *xyz;
short ndef;

} abc_t;

*def

*xyz

ndef

abc_t

nex t

prev

name

loval

hival

def_t

structure abc_t f ield within struc ture

zoomed-in view

abc_t
field

head name1 namendef

xyz[0]

xyz[1]

xyz[2]

xyz[nxyz–1]

i

f

s [1]
b[0] b[1] b[2] b[3]

b[4] b[5] b[6] b[7]

of a s tructure

pointer

Legend

s[0]

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Architectural decomposition:
at least one diagram per level of decomposition

Detailed design:
at least one diagram per function or module

Poor Software Design Diagrams

Process-flow
Data-flow

Finite-state machines

Data relationships
Dependency graphs

Sequence

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

How do we create good diagrams?

Land

Water

Create a legend for every diagram.

Every block, symbol, line, shading, color, and font type
should be specified in legend.

Any deviation from legend shows an error in the design.

Poor Software Design Diagrams

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

“It’s just a glitch”

Never assume that
a problem has been
fixed magically

Note problem in
your log book
immediately!

Spend some time to
try and fix the problem

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

“It’s just a glitch”

What are the most likely causes?

Timing Error (race condition, priority inversion)
Memory Corruption
Deadlock

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

(1) During design phase, take precautions:
Formal code review
Minimize shared resources and memory
Minimize use of interrupts
Use deadlock-free IPC solutions

“It’s just a glitch”

How do we pinpoint the problem?

(2) During testing and maintenance phases:
Put sleep() commands within critical sections
Check for stack corruption
Incrementally add debug statements
Monitor progress on logic analyzer

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

The first right answer is the only answer

Every problem has at least 3 answers:
The first answer
The opposite answer
A compromise between the first two answers

Which is the best answer?

Learn to be more creative to find the other answers.

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

No code reviews

Code reviews are a proven way
to improve quality and robustness

Reviews help eliminate messy code by forcing
programmers to show their code to others

Studies have shown that more problems can get fixed in
one day of code review than in a month of debugging

Reviews double as training sessions to increase
number of employees who understand the code

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

“Nobody else here can help me”
syndrome

Learn by teaching others!

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

One Big Loop

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

One Big Loop

Use proper concurrent design techniques:
Non-preemptive: cyclic or multi-rate executive
Preemptive: real-time operating system

Don’t use interrupts to emulate multitasking

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Too many inter-module
dependencies

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

abc

def ghi

jkl stu

mno uvwprq

xyz

abc

def ghi

jkl stu

mno uvwpqr

xyz

abc

def ghi

jkl stu

mno uvwprq

xyz

Example of Dependency Graph

abc

def ghi

jkl stu

mno uvwprq

xyz

jkljkl

uvwpqr

xyz

abc

def ghi

jkl stu

mno uvwpqr

xyz

Minimize Circular Dependencies!

Too many inter-module
dependencies

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

#include “globals.h” problem

Follow fundamental Software Engineering concepts, especially:
· Data encapsulation and modularity
· Use abstract data types or objects

Put code for module abc in file abc.c.
abc.h

abc.c

pqr.h

pqr.c

Only put definitions of anything
exported from abc.c into file abc.h

#include only the .h files you need.

Too many inter-module
dependencies

Hints for maximizing modularity:

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

No naming and style
conventions!

Establish a set of conventions, and stick to them!

Use the conventions to help reader
to quickly identify the origin
and purpose of the symbol.

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

No measurements of
execution time!

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

No measurements of
execution time!

First, design your system so that the code is measurable!

Learn both coarse-grain and fine-grain techniques
to measure execution time.

Measure execution time as part of your standard testing.
Do not only test the functionality of the code!

Use coarse-grain measurements for analyzing real-time properties

Use fine-grain measurements for optimizing and fine-tuning

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Most Common Mistakes with
Real-Time Software Development

Correcting just ONE mistake
can save thousands of dollars

or significantly improve
quality and robustness of software.

Correcting SEVERAL mistakes
can lead to savings and improvements

that are incalculable!

Summary

Top 25 Most Common Mistakes with Real-Time Software Development
Dave Stewart; Director of Software Engineering, InHand Electronics, www.inhand.com

Embedded Systems Conference
Boston, 2006

Dave Stewart
Director of Software Engineering
InHand Electronics
Rockville, Maryland
dstewart@inhand.com
http://www.inhand.com

Most Common Mistakes with
Real-Time Software Development

