Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
circuit_design:5_filter_circuits_i [2023/03/28 14:31]
mexleadmin
circuit_design:5_filter_circuits_i [2023/07/17 11:59] (aktuell)
mexleadmin
Zeile 11: Zeile 11:
 === Introductory example === === Introductory example ===
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5BOJyVKtALADgOxjAGwCsyATBkRjgMw4jXUhEgaNECmAtPgFACGIUlizgh9LBlEiRYZt2Zh48dEuokciDJFKQi5HAQJRwSyDwDu4yflJWQBSWYDGdh4OH3HTWKd9wwXHSc1NDqYKTIYBgOCHiMMP4W7iJuQjLhUDwAToKQ6bZp4BmQJnDZdtQFHpXGimWWhTWFbmaW1BL0tu2SLTwA5sngGJKFYAbGZgBKIAhG4SnWYiW2WkwT6EQ8OnTdUnZjRpIAqgD6APJgPFqM1JAjeSzYgji2JYonGCeQJ+ERnzjQLC6IiESA0AgaIgSL4+SBgL4nUg-b7UE6nC48MZvYYzOY41K5UolZgwS4AZXA4xsQ2sxWMADM+AAbADO7GMpCSByKBQe1LM13ABGWD0KpBexk+n2+vwQnwQ0FiRDBWiIUIMpEMMPg8O+SM+qNOAEkADosgAUADsAPYASxZAE8AJRbMG4vazIUlY4nI08ABuNI9cyW9hYyhJE1CrroRGFezjb3GPrOnIG0WsOIzlKMJVaTHjNUTnkylmzNWzvRyxYrbhqb3g5V21Oz-KJSUrklbxR4LmLbk7UdMsnQYCwRBeFFIYCQlFuapUcKSxfmBZKvQErbEK7EMjkI7qShAnASSjHE9ImocBlwWCEXkP9X2GWbSyukEY2BFC2WEreWA+BEMEUJEsEwEh-DyJBWAA084QRJExxOQ1zk5QVvyDcVXiFQCZUvOUTiIWE-DPbV-AQn4CGQtFfR4IA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5BOJyVKtALADgOwEY8A2AVmQCYNiMcwdwJiQMGBTAWgICgBDEMrLCDz9wWDEJGC8jDozzx4INjAWVCkLMIIJCWMGURQhCyJwDuo8QTKWQhcaYDGt+3wF2HIYrBO+4edjoMaGJ1LGIcHDIcLEgMDEgSdH9zN0FXfilhKE4AJz4NIWzMoptIYzg823008DKK0wsSmpLXRuqbMDEPHIBzWrx4gZxCI1MAJQkpER0poxsErzH0Yk4DOi6rEU2+IiYQAFUAfQB5PE4EiDBdAsFiYqijeSOMI8gjgA89SCIjnGgsGQIghaAgMCQwNIyG8fD8jhwjtDXu9nmAYapUJiUIQ3kcADoAZ04eBw5RJo1cswyBQaSxg5wAyrdSkIRizyuUAGbcAA2BJY8zWkDoBiyNlFu1G4mOAElOAA3VmjYTTVVGKWKRgclZCuihMkifWS-bHE5kTj9cFWIZWpVjVJGmpGtqpW01W0u-KOhauGpk+BVHbWJiuYP+yoWD3iW1hzjOZ3R1xtZIKaRKMDQQjqewYaQEKhIbAp84WI0qrzqHqmXgxw2V8tSGRp+QmFNwa7Z4VUYjChBUTwtgMWIPZIMiUyXLxDCWk8TReq-ZGfTQ-HFYTCkfwaQtddH+eF4REvXG-NEqeAYLFXnHvQmpckgWYPl2TvAIcWFMDXPiPMmvJdfPIvzPPSB5HkugxHGesDELid5AA noborder}} </WRAP>
  
 Various applications work in harsh environments, where a clear digital signal becomes a noisy signal at the receiver (e.g. sensors in the engine compartment or industrial environments, satellite communication). In the simulation above, the left scope shows the original signal. The second scope shows the noisy signal. Various applications work in harsh environments, where a clear digital signal becomes a noisy signal at the receiver (e.g. sensors in the engine compartment or industrial environments, satellite communication). In the simulation above, the left scope shows the original signal. The second scope shows the noisy signal.
Zeile 54: Zeile 54:
 The conversion to a level in $dB$ is defined for current or voltage ratios by the following equation: The conversion to a level in $dB$ is defined for current or voltage ratios by the following equation:
  
-$\boxed{A_{\rm V}^{\rm dB}=20 ~{\rm dB} \cdot \log_{10}\left(\frac{U_2}{U_1}\right)=20 dB \cdot \log_{10} A_\rm V}$(nbsp)(nbsp)(nbsp)(nbsp) {\rm resp.(nbsp)(nbsp)(nbsp)(nbsp) $A_{\rm C}^{\rm dB}=20 ~{\rm dB} \cdot \log_{10}\left(\frac{I_2}{I_1}\right)$+$\boxed{A_{\rm V}^{\rm dB}=20 ~{\rm dB} \cdot \log_{10}\left(\frac{U_2}{U_1}\right)=20 {\rm dB\cdot \log_{10} A_\rm V}$(nbsp)(nbsp)(nbsp)(nbsp)  resp. (nbsp)(nbsp)(nbsp)(nbsp) $A_{\rm C}^{\rm dB}=20 ~{\rm dB} \cdot \log_{10}\left(\frac{I_2}{I_1}\right)$
  
 \\ \\
Zeile 93: Zeile 93:
  
   - For $A_{\rm V}= \color{green}{1} $ we get <WRAP>    - For $A_{\rm V}= \color{green}{1} $ we get <WRAP> 
-$ A_{\rm V}^{\rm dB}(\color{green}{1}) = 20 {\rm dB} \cdot \underbrace{log_{10}\left(\color{green}{1}\right)}_\color{blue}{x} \qquad \qquad \rightarrow \boldsymbol{A_{\rm V}^{\rm dB}(\color{green}{1})} \quad = 20 {\rm dB} \cdot 0 \quad \ \boldsymbol{= 0 {\rm dB}}$ \\ +$ A_{\rm V}^{\rm dB}(\color{green}{1}) = 20 {\rm dB} \cdot \underbrace{\log_{10}\left(\color{green}{1}\right)}_\color{blue}{x} \qquad \qquad \rightarrow \boldsymbol{A_{\rm V}^{\rm dB}(\color{green}{1})} \quad = 20 {\rm dB} \cdot 0 \quad \ \boldsymbol{= 0 {\rm dB}}$ \\ 
 Here $\color{blue}{x}$ has the value that gives $10^\color{blue}{x} = \color{green}{1}$, so just $\color{blue}{x}=0$. </WRAP> \\  \\ Here $\color{blue}{x}$ has the value that gives $10^\color{blue}{x} = \color{green}{1}$, so just $\color{blue}{x}=0$. </WRAP> \\  \\
   - For $A_{\rm V}= \color{green}{0.01} $ we get <WRAP>    - For $A_{\rm V}= \color{green}{0.01} $ we get <WRAP> 
-$ A_{\rm V}^{\rm dB}(\color{green}{0.01}) = 20 {\rm dB} \cdot \underbrace{log_{10}\left(\color{green}{0.01}\right)}_\color{blue}{x} \qquad \rightarrow \boldsymbol{A_{\rm V}^{\rm dB}(\color{green}{0.01})} = 20 {\rm dB} \cdot (-2) \boldsymbol{= -40 {\rm dB}}$ \\ +$ A_{\rm V}^{\rm dB}(\color{green}{0.01}) = 20 {\rm dB} \cdot \underbrace{\log_{10}\left(\color{green}{0.01}\right)}_\color{blue}{x} \qquad \rightarrow \boldsymbol{A_{\rm V}^{\rm dB}(\color{green}{0.01})} = 20 {\rm dB} \cdot (-2) \boldsymbol{= -40 {\rm dB}}$ \\ 
 Here $\color{blue}{x}$ has the value, that gives $10^\color{blue}{x} = \color{green}{0.01}$, so even $\color{blue}{x}=-2$. </WRAP>   \\  \\ Here $\color{blue}{x}$ has the value, that gives $10^\color{blue}{x} = \color{green}{0.01}$, so even $\color{blue}{x}=-2$. </WRAP>   \\  \\
   - For $A_{\rm V}= \color{green}{2} $, we get <WRAP>    - For $A_{\rm V}= \color{green}{2} $, we get <WRAP> 
-$ A_{\rm V}^{\rm dB}(\color{green}{2}) = 20 {\rm dB} \cdot \underbrace{log_{10}\left(\color{green}{2}\right)}_\color{blue}{x} \qquad \qquad \rightarrow \boldsymbol{A_{\rm V}^{\rm dB}(\color{green}{2})} \quad\approx 20 {\rm dB} \cdot 0.30103 \boldsymbol{\approx 6 {\rm dB}}$ \\ +$ A_{\rm V}^{\rm dB}(\color{green}{2}) = 20 {\rm dB} \cdot \underbrace{\log_{10}\left(\color{green}{2}\right)}_\color{blue}{x} \qquad \qquad \rightarrow \boldsymbol{A_{\rm V}^{\rm dB}(\color{green}{2})} \quad\approx 20 {\rm dB} \cdot 0.30103 \boldsymbol{\approx 6 {\rm dB}}$ \\ 
 Here $\color{blue}{x}$ has the value that gives $10^\color{blue}{x} = \color{green}{2}$. Thus, $\color{blue}{x}\approx 0.30103$. </WRAP> \\  \\ Here $\color{blue}{x}$ has the value that gives $10^\color{blue}{x} = \color{green}{2}$. Thus, $\color{blue}{x}\approx 0.30103$. </WRAP> \\  \\
  
Zeile 119: Zeile 119:
  
 Especially the last point of the calculation should be considered again. In <imgref pic0> several amplifiers connected in series can be seen with exemplary voltage gain values. \\  Especially the last point of the calculation should be considered again. In <imgref pic0> several amplifiers connected in series can be seen with exemplary voltage gain values. \\ 
-The total gain here is the product of the individual gains: $A_{\rm V, eq}=\prod A_{\rm i} = A_1 \cdot A_2 \cdot A_3$. \\ +The total gain here is the product of the individual gains: $A_{\rm V, eq}=\prod A_{i} = A_1 \cdot A_2 \cdot A_3$. \\ 
 The determination of the total gain was rather laborious before the time of the pocket calculator due to the multiplications.  The determination of the total gain was rather laborious before the time of the pocket calculator due to the multiplications. 
 For the levels, the result is an addition: $A_{\rm V,eq}^{\rm dB}=\sum A_i^{\rm dB} = A_1^{\rm dB} + A_2^{\rm dB} + A_3^{\rm dB}$. \\  For the levels, the result is an addition: $A_{\rm V,eq}^{\rm dB}=\sum A_i^{\rm dB} = A_1^{\rm dB} + A_2^{\rm dB} + A_3^{\rm dB}$. \\ 
Zeile 130: Zeile 130:
   - A linear factor of $\color{green}{\times 10}$ results in level $+ 20~{\rm dB}$.   - A linear factor of $\color{green}{\times 10}$ results in level $+ 20~{\rm dB}$.
   - A linear factor of $\color{green}{\times 2} $ results in a level of $+ 6~{\rm dB}$.   - A linear factor of $\color{green}{\times 2} $ results in a level of $+ 6~{\rm dB}$.
-  - The linear value $A_{\rm V} = 1$ corresponds to $0 {\rm dB}$.+  - The linear value $A_{\rm V} = 1$ corresponds to $0 ~{\rm dB}$.
  
 For systems connected in series, to determine the amplification For systems connected in series, to determine the amplification
Zeile 147: Zeile 147:
  
 Examples: Examples:
-  - $A_{\rm V}^{\rm dB}=58~{\rm dB}$ \\ with interpolation points: $A_{\rm V}^{dB}=58~{\rm dB} = 40~{\rm dB} + 18~{\rm dB} = \color{blue}{2}\cdot 20~{\rm dB} + \color{magenta}{3}\cdot 6~{\rm dB}$ \\ This becomes linear to  $ \qquad \qquad \qquad \qquad \qquad \  A_{\rm V} = 10^\color{blue}{2} \qquad  \cdot \qquad  2^\color{magenta}{3} \qquad = 100 \cdot 8 = 800$ \\ \\ +  - <WRAP> $A_{\rm V}^{\rm dB}=58~{\rm dB}$ \\ with interpolation points:  
-  - $A_{\rm V}^{\rm dB}=56~{\rm dB}$ \\ with interpolation points: $A_{\rm V}^{dB}=56~{\rm dB} = 80~{\rm dB} - 24~{\rm dB} = \color{blue}{4}\cdot 20~{\rm dB} + \color{magenta}{-4}\cdot 6~{\rm dB}$ \\ This becomes linear $ \qquad \qquad \qquad \qquad \qquad \ A_{\rm V} = 10^\color{blue}{4} \qquad \cdot \qquad  2^\color{magenta}{-4} \qquad = 10000 \cdot \frac{1}{16} = 625$ \\  oder $A_{\rm V}^{\rm dB} = 20~{\rm dB} + 36~{\rm dB} \rightarrow A_{\rm V}= 10^\color{blue}{1} \cdot 2^\color{magenta}{6} = 10 \cdot 64 = 640$ \\ \\ +$A_{\rm V}^{dB}=58~{\rm dB} = 40~{\rm dB} + 18~{\rm dB} = \color{blue}{2}\cdot 20~{\rm dB} + \color{magenta}{3}\cdot 6~{\rm dB}$ \\  
-  - $A_{\rm V}^{\rm dB}=55~{\rm dB}$ \\ with interpolation points: $A_{\rm V}^{dB}=56~{\rm dB} = 40~{\rm dB} + 18~{\rm dB} - 3~{\rm dB} = \color{blue}{2}\cdot 20~{\rm dB} + \color{magenta}{3}\cdot 6~{\rm dB}  + \color{teal}{-\frac{1}{2}}\cdot 6~{\rm dB}$ \\ This becomes linear to $ \qquad \qquad \qquad \qquad \qquad \qquad  \ A_{\rm V} = 10^\color{blue}{2} \qquad \cdot \qquad  2^\color{magenta}{3}  \qquad \cdot \qquad  2^\color{teal}{-\frac{1}{2}} \approx 100 \cdot 8 \cdot 0.707  = 560$ +This becomes linear   $ \qquad \qquad \qquad \qquad \qquad \qquad \quad \  A_{\rm V} = 10^\color{blue}{2} \qquad  \cdot \qquad  2^\color{magenta}{3} \qquad = 100 \cdot 8 = 800$ </WRAP>\\ \\ 
 +  - <WRAP>$A_{\rm V}^{\rm dB}=56~{\rm dB}$ \\ with interpolation points:  
 +$A_{\rm V}^{dB}=56~{\rm dB} = 80~{\rm dB} - 24~{\rm dB} = \color{blue}{4}\cdot 20~{\rm dB} + \color{magenta}{-4}\cdot 6~{\rm dB}$ \\  
 +This becomes linear $ \qquad \qquad \qquad \qquad \qquad \qquad \quad\ A_{\rm V} = 10^\color{blue}{4} \qquad \cdot \qquad  2^\color{magenta}{-4} \qquad = 10000 \cdot \frac{1}{16} = 625$ \\  or alternatively  $qquad \qquad \qquad \qquad \qquad \qquad A_{\rm V}^{\rm dB} = 20~{\rm dB} + 36~{\rm dB} \rightarrow A_{\rm V}= 10^\color{blue}{1} \cdot 2^\color{magenta}{6} = 10 \cdot 64 = 640$ </WRAP>\\ \\ 
 +  - <WRAP>$A_{\rm V}^{\rm dB}=55~{\rm dB}$ \\ with interpolation points:  
 +$A_{\rm V}^{dB}=56~{\rm dB} = 40~{\rm dB} + 18~{\rm dB} - 3~{\rm dB} = \color{blue}{2}\cdot 20~{\rm dB} + \color{magenta}{3}\cdot 6~{\rm dB}  + \color{teal}{-\frac{1}{2}}\cdot 6~{\rm dB}$ \\  
 +This becomes linear $ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad  \ A_{\rm V} = 10^\color{blue}{2} \qquad \cdot \qquad  2^\color{magenta}{3}  \qquad \cdot \qquad  2^\color{teal}{-\frac{1}{2}} \approx 100 \cdot 8 \cdot 0.707  = 560$ </WRAP>
  
 \\  \\ 
Zeile 204: Zeile 210:
 A jump in frequency by a factor of $\times 10$ is called a **decade**  (abbreviated Dec.).  The amplitude response of various functions will be briefly discussed ($\mathcal{C}$ is an arbitrary frequency-independent factor): A jump in frequency by a factor of $\times 10$ is called a **decade**  (abbreviated Dec.).  The amplitude response of various functions will be briefly discussed ($\mathcal{C}$ is an arbitrary frequency-independent factor):
  
-  - $|A_{\rm V}(f)| = \mathcal{C} \cdot f$: If a function is considered that increases linearly with $f$, then a tenfold increase in frequency results in a tenfold increase in voltage gain. This results in an increase of $+20~{\rm dB}$ per decade.     +  - $|A_{\rm V}(f)| = \mathcal{C} \cdot f$: \\ If a function is considered that increases linearly with $f$, then a tenfold increase in frequency results in a tenfold increase in voltage gain. \\ This results in an increase of $+20~{\rm dB}$ per decade.     
-  - $|A_{\rm V}(f)| = \mathcal{C} / f$: If a function is considered that is reciprocal to $f$, then a tenfold increase in frequency results in a decrease in voltage gain to one-tenth. This results in a drop of $-20~{\rm dB}$ per decade (cf. <imgref picB> at high frequencies).      +  - $|A_{\rm V}(f)| = \mathcal{C} / f$:  \\ If a function is considered that is reciprocal to $f$, then a tenfold increase in frequency results in a decrease in voltage gain to one-tenth. \\ This results in a drop of $-20~{\rm dB}$ per decade (cf. <imgref picB> at high frequencies).      
-  - $|A_{\rm V}(f)| = \mathcal{C} / f^n$: Considering a function reciprocal to $f^n$, a tenfold increase in frequency results in a drop in voltage gain to one $1/10^n$th. This results in a drop of $-20~{\rm dB} \cdot n$ per decade.+  - $|A_{\rm V}(f)| = \mathcal{C} / f^n$: \\ Considering a function reciprocal to $f^n$, a tenfold increase in frequency results in a drop in voltage gain to one $1/10^n$th. \\ This results in a drop of $-20~{\rm dB} \cdot n$ per decade.
  
 As an alternative to the actual course, $|A_{\rm V}(f)|$ and $\varphi(f)$ are occasionally represented idealized with straight line segments. As an alternative to the actual course, $|A_{\rm V}(f)|$ and $\varphi(f)$ are occasionally represented idealized with straight line segments.
Zeile 217: Zeile 223:
   - Phase response: linear phase over logarithmic frequency (i.e. single logarithmic representation)   - Phase response: linear phase over logarithmic frequency (i.e. single logarithmic representation)
  
-This gives a straight line in the amplitude response for functions of the form $A(\omega) \sim \omega^n$.  In particular, this is true for $A(\omega) \sim \omega$, i.e., a slope of +20dB/decade, and for $A(\omega) \sim \frac{1}{\omega}$, i.e., a slope of -20dB/decade </WRAP></WRAP></panel> </WRAP> ~~PAGEBREAK~~+This gives a straight line in the amplitude response for functions of the form $A(\omega) \sim \omega^n$.   
 +In particular, this is true for $A(\omega) \sim \omega$, i.e., a slope of $~\rm 20dB/decade$, and for $A(\omega) \sim \frac{1}{\omega}$, i.e., a slope of $-20~\rm dB/decade$  
 +</WRAP></WRAP></panel> </WRAP> ~~PAGEBREAK~~
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 254: Zeile 262:
 The circuit thus created is called an **inverse integrator** or inverting integrator. The circuit thus created is called an **inverse integrator** or inverting integrator.
  
-If you look at the circuit, you can see that the node $K_1$ is at virtual ground. With a constant input voltage, the input current is therefore constant and defined only by the resistance. Thus, the capacitor charges with a constant current; the charge increases linearly. The voltage across the capacitor therefore also increases linearly.+If you look at the circuit, you can see that the node $\rm K_1$ is at virtual ground. With a constant input voltage, the input current is therefore constant and defined only by the resistance. Thus, the capacitor charges with a constant current; the charge increases linearly. The voltage across the capacitor therefore also increases linearly.
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 272: Zeile 280:
 Given the following equations: Given the following equations:
  
-|I.    |Basic equation| $                   U_{\rm O} = A_{\rm D} \cdot U_{\rm D}$                            +|I.    |Basic equation| $                   U_{\rm O} = A_{\rm D} \cdot U_{\rm D}$                                  
-|II.   |Mesh 1        | $-U_{\rm I} + U_R - U_{\rm D} = 0$                                                    +|II.   |Mesh 1        | $-U_{\rm I} + U_R - U_{\rm D} = 0$                                                          
-|III.  |Mesh 2        | $ U_{\rm D} + U_C + U_{\rm O} = 0$                                                    +|III.  |Mesh 2        | $ U_{\rm D} + U_C + U_{\rm O} = 0$                                                          
-|IV.   |Node          | $ I_R                         = I_C$                                                  +|IV.   |Node          | $ I_R                         = I_C$                                                        
-|V.    |Capacity C    | $C   = {   Q \over U_C } = { 1 \over U_C }\cdot(\int_{t_0}^{t_1} I_C dt+ Q_0(t_0)) $  | +|V.    |Capacity C    | $C   = {   Q \over U_C } = { 1 \over U_C }\cdot(\int_{t_0}^{t_1} I_C {\rm d}t+ Q_0(t_0)) $  | 
-|VI.   |Resistance R  | $R   = { U_R \over I_R }$                                                             |+|VI.   |Resistance R  | $R   = { U_R \over I_R }$                                                                   |
  
 === Calculation === === Calculation ===
Zeile 359: Zeile 367:
  
 $U_R=R\cdot I \qquad \qquad \qquad \qquad \qquad \rightarrow \underline{U}_R = R \cdot \underline{I}$ \\ $U_R=R\cdot I \qquad \qquad \qquad \qquad \qquad \rightarrow \underline{U}_R = R \cdot \underline{I}$ \\
-$U_C={ 1 \over C }\cdot(\int_{t_0}^{t_1} I_C \ dt+ Q_0(t_0)) \qquad  \rightarrow \underline{U}_C = \underline{Z}_C \cdot \underline{I} \quad$ with $\quad \underline{Z}_C= \frac{1}{j \cdot \omega \cdot C}$ \\+$U_C={ 1 \over C }\cdot(\int_{t_0}^{t_1} I_C \ {\rm d}t+ Q_0(t_0)) \qquad  \rightarrow \underline{U}_C = \underline{Z}_C \cdot \underline{I} \quad$ with $\quad \underline{Z}_C= \frac{1}{{\rm j\cdot \omega \cdot C}$ \\
  
 However, this consideration can only be implemented under certain boundary conditions: However, this consideration can only be implemented under certain boundary conditions:
  
-  - **sinusoidal quantities**: complex current or voltage pointers (cf. [[:elektrotechnik_2:wechselstromtechnik|ET2 Wechselstromtechnik]]) can only represent sinusoidal quantities.+  - **sinusoidal quantities**: complex current or voltage pointers (see [[:electrical_engineering_1:introduction_in_alternating_current_technology|Introduction in AC circuits]]) can only represent sinusoidal quantities.
   - **Steady state**: The systems of equations consider only sinusoidal oscillations that have already existed for infinite time. This corresponds to a long time since the switch-on. This takes out disturbances that are generated by switching on.   - **Steady state**: The systems of equations consider only sinusoidal oscillations that have already existed for infinite time. This corresponds to a long time since the switch-on. This takes out disturbances that are generated by switching on.
  
Zeile 421: Zeile 429:
 The phase $\varphi$ is calculated via The phase $\varphi$ is calculated via
  
-$\varphi = arctan \left( \frac{\Im(\underline{A}_{\rm V})}{\Re(\underline{A}_{\rm V})} \right) = arctan \left( \frac{\omega \cdot R \cdot C}{0} \right) = arctan \left( \infty \right) = +90°$+$\varphi = \arctan \left( \frac{\Im(\underline{A}_{\rm V})}{\Re(\underline{A}_{\rm V})} \right) = \arctan \left( \frac{\omega \cdot R \cdot C}{0} \right) = \arctan \left( \infty \right) = +90°$
  
 The phase $\varphi=+90°$ for $arctan(x)|_{x\rightarrow \infty}$ is also evident from the course of the arctangent (<imgref pic6>) for $x \rightarrow \infty$. The phase $\varphi=+90°$ for $arctan(x)|_{x\rightarrow \infty}$ is also evident from the course of the arctangent (<imgref pic6>) for $x \rightarrow \infty$.
Zeile 469: Zeile 477:
 <WRAP>{{url>https://www.falstad.com/afilter/circuitjs.html?running=false&cct=$+1+0.000005+5+63+5+50%0A%25+4+984968.4014609919%0Ag+208+208+208+256+0%0Aw+352+112+352+192+0%0Aw+208+112+208+176+0%0Aa+208+192+352+192+4+15+-15+100000000%0Ac+288+112+336+112+0+1.5915000000000002e-7+0.16559840149986407%0Ar+112+112+208+112+0+10000%0AO+352+192+416+192+0%0A170+112+112+64+112+2+20+4000+5+0.1%0Ar+288+64+336+64+0+1000%0Aw+352+64+352+112+0%0Aw+208+64+208+112+0%0AB+224+32+336+144+0+Box%0As+288+64+224+64+0+0+false%0As+288+112+224+112+0+0+false%0Aw+208+64+224+64+0%0Aw+208+112+224+112+0%0Aw+336+112+352+112+0%0Aw+336+64+352+64+0%0Ax+229+53+251+56+0+18+S1%0Ax+229+98+251+101+0+18+S2%0Ao+0+32+0+34+10+0.0125+0+-1%0A noborder}} </WRAP> <WRAP>{{url>https://www.falstad.com/afilter/circuitjs.html?running=false&cct=$+1+0.000005+5+63+5+50%0A%25+4+984968.4014609919%0Ag+208+208+208+256+0%0Aw+352+112+352+192+0%0Aw+208+112+208+176+0%0Aa+208+192+352+192+4+15+-15+100000000%0Ac+288+112+336+112+0+1.5915000000000002e-7+0.16559840149986407%0Ar+112+112+208+112+0+10000%0AO+352+192+416+192+0%0A170+112+112+64+112+2+20+4000+5+0.1%0Ar+288+64+336+64+0+1000%0Aw+352+64+352+112+0%0Aw+208+64+208+112+0%0AB+224+32+336+144+0+Box%0As+288+64+224+64+0+0+false%0As+288+112+224+112+0+0+false%0Aw+208+64+224+64+0%0Aw+208+112+224+112+0%0Aw+336+112+352+112+0%0Aw+336+64+352+64+0%0Ax+229+53+251+56+0+18+S1%0Ax+229+98+251+101+0+18+S2%0Ao+0+32+0+34+10+0.0125+0+-1%0A noborder}} </WRAP>
  
-In the simulation above, the circuit from <imgref pic7_1> is shown again. In addition, two switches $S1$ and $S2$ are built into the circuit by which the various feedback paths can be disabled:+In the simulation above, the circuit from <imgref pic7_1> is shown again. In addition, two switches $\rm S1$ and $\rm S2$ are built into the circuit by which the various feedback paths can be disabled:
  
-  - If only switch $S1$ is closed, the circuit is an inverting amplifier. +  - If only switch $\rm S1$ is closed, the circuit is an inverting amplifier. 
-  - If only switch $S2$ is closed, the circuit is an inverting integrator.+  - If only switch $\rm S2$ is closed, the circuit is an inverting integrator.
  
 In the simulation, the Bode diagram is sketched below. By clicking on the Bode diagram, the distribution of the current in the circuit corresponding to the frequency is displayed and - in addition to the Bode diagram - also the gain in ${\rm dB}$, or the phase in degrees. In the simulation, the Bode diagram is sketched below. By clicking on the Bode diagram, the distribution of the current in the circuit corresponding to the frequency is displayed and - in addition to the Bode diagram - also the gain in ${\rm dB}$, or the phase in degrees.
Zeile 541: Zeile 549:
 For the intermediate area, there must be a transition between the two extremal situations. For the intermediate area, there must be a transition between the two extremal situations.
  
-One problem still seems to be that for the inverting amplifier, it is not clear whether the phase is now $+180°$ or $-180°$. In the mathematical consideration of the inverting integrator, it turned out that for a capacitor an integration step ($U=\frac{1}{C} \int I_C \ dt$) must be performed. In the inverting amplifier, no integration step was necessary. Thus, a sinusoidal input signal is shifted by 90° at most. So there must be just a $90°$ phase shift from the inverting amplifier to high frequencies at low frequencies.+One problem still seems to be that for the inverting amplifier, it is not clear whether the phase is now $+180°$ or $-180°$. In the mathematical consideration of the inverting integrator, it turned out that for a capacitor an integration step ($U=\frac{1}{C} \int I_C \ {\rm d}t$) must be performed. In the inverting amplifier, no integration step was necessary. Thus, a sinusoidal input signal is shifted by 90° at most. So there must be just a $90°$ phase shift from the inverting amplifier to high frequencies at low frequencies.
  
 From this knowledge, we get an expected Bode diagram as seen in <imgref pic10>. From this knowledge, we get an expected Bode diagram as seen in <imgref pic10>.
Zeile 590: Zeile 598:
 For the phase, $\varphi$ real value $\Re(\underline{A}_{\rm V})$ and imaginary value $\Im(\underline{A}_{\rm V})$ must be determined by multiplication with the conjugate complex value. For the phase, $\varphi$ real value $\Re(\underline{A}_{\rm V})$ and imaginary value $\Im(\underline{A}_{\rm V})$ must be determined by multiplication with the conjugate complex value.
  
-$\varphi = arctan(\frac{\Im(\underline{A}_{\rm V})}{\Re(\underline{A}_{\rm V})})$+$\varphi = \arctan(\frac{\Im(\underline{A}_{\rm V})}{\Re(\underline{A}_{\rm V})})$
  
 But here, too, there is a "trick": But here, too, there is a "trick":
Zeile 600: Zeile 608:
 $\underline{A}_{\rm V}= \color{blue}{\mathcal{C}} \cdot (1 - {\rm j} \omega \cdot R_2 \cdot C)$ $\underline{A}_{\rm V}= \color{blue}{\mathcal{C}} \cdot (1 - {\rm j} \omega \cdot R_2 \cdot C)$
  
-Thus, the phase $\varphi = arctan\left(\frac{\color{teal}{\Im(\underline{A}_{\rm V})}}{\color{brown}{\Re(\underline{A}_{\rm V})}}\right)$ is obtained as.+Thus, the phase $\varphi = \arctan\left(\frac{\color{teal}{\Im(\underline{A}_{\rm V})}}{\color{brown}{\Re(\underline{A}_{\rm V})}}\right)$ is obtained as.
  
 $\underline{A}_{\rm V}= \mathcal{C} \cdot (\color{brown}{1} + {\rm j} \cdot (\color{teal}{-\omega \cdot R_2 \cdot C}))$ $\underline{A}_{\rm V}= \mathcal{C} \cdot (\color{brown}{1} + {\rm j} \cdot (\color{teal}{-\omega \cdot R_2 \cdot C}))$
  
-$\boxed{\varphi = arctan\left(\frac{\color{teal}{-\omega \cdot R_2 \cdot C}}{\color{brown}{1}}\right)}$+$\boxed{\varphi = \arctan\left(\frac{\color{teal}{-\omega \cdot R_2 \cdot C}}{\color{brown}{1}}\right)}$
  
 \\ \\
Zeile 624: Zeile 632:
 </panel> </WRAP> </panel> </WRAP>
  
-For finding the phase $\color{red}{\varphi} = arctan\left(\color{teal}{-\omega \cdot R_2 \cdot C}\right)$ it helps to look at the arctangent in the diagram. To do this, the argument $Arg = \color{teal}{-\omega \cdot R_2 \cdot C}$ is plotted against the phase $\color{red}{\varphi}$ (<imgref pic20>). For the extremal values $\omega$ of results in:+For finding the phase $\color{red}{\varphi} = \arctan\left(\color{teal}{-\omega \cdot R_2 \cdot C}\right)$ it helps to look at the arctangent in the diagram. To do this, the argument $Arg = \color{teal}{-\omega \cdot R_2 \cdot C}$ is plotted against the phase $\color{red}{\varphi}$ (<imgref pic20>). For the extremal values $\omega$ of results in:
  
   - at $\omega \rightarrow 0$: the argument $Arg = \color{teal}{-\omega \cdot R_2 \cdot C}$ goes towards $-0$.   - at $\omega \rightarrow 0$: the argument $Arg = \color{teal}{-\omega \cdot R_2 \cdot C}$ goes towards $-0$.
Zeile 652: Zeile 660:
 The phase at the cut-off frequency is: The phase at the cut-off frequency is:
  
-$\varphi_{c} = arctan\left(-\omega_{c} \cdot R_2 \cdot C\right) = arctan\left(-\frac{1}{ R_2 \cdot C} \cdot R_2 \cdot C\right) = arctan\left(-1 \right)$ +$\varphi_{c} = \arctan\left(-\omega_{c} \cdot R_2 \cdot C\right) = \arctan\left(-\frac{1}{ R_2 \cdot C} \cdot R_2 \cdot C\right) = \arctan\left(-1 \right)$ 
  
 $\boxed{\varphi_{c} = \frac{3}{4} \pi =135°}$ $\boxed{\varphi_{c} = \frac{3}{4} \pi =135°}$
Zeile 667: Zeile 675:
 </panel></WRAP> </panel></WRAP>
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&cct=$+1+0.000049999999999999996+1.9265835257097934+41+5+43%0Aa+288+128+384+128+8+15+-15+1000000+-0.000039999600019248555+0+100000%0Aw+384+112+384+80+0%0Ac+208+112+160+112+0+5.000000000000001e-7+-3.42003999865076%0Aw+288+80+288+112+0%0Ar+384+80+288+80+0+10000%0Ag+288+144+288+176+0%0AR+128+112+96+112+0+3+40+5+0+0+0.5%0A207+384+128+432+128+4+U_O%0A403+320+208+464+272+0+7_8_0_12294_4.008796818347498_0.0001_0_2_7_3_U%5CsA%0A207+128+112+128+144+4+U_I%0Aw+384+112+384+128+0%0A403+112+208+256+272+0+9_8_0_12294_4.9840000009474466_0.0001_0_2_9_3_U%5CsE%0Aw+128+112+160+112+0%0Aw+272+112+288+112+0%0Ar+208+112+272+112+0+10%0A noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DZzSQJgwKwAcAzAbgQOyRKVIkIgIQFMkgECmAtGGAFABDELiJFwokCSKMwk8WFa9WYePBDcYakmgzwweBEQImo4NZH4B3KTPBzbjIpCj8AxiMgKHYPfdxmBLAWIXBgPJQaJNAIuHA6KESEkJRYWpACNqLiziJi-q4ATo4gudmlLi6q8PwA5nkKCIzlYKlmlgBKEt4BSFh8AS7sCC6slVDQBPxxkdKykggkAXLijACqAPoA8vwj7EsucasYzZSDIJQbRBuQG3K4SAg3wRnP+hu8G7gblyQbmzsZt0CitwE0mCBNgBJawlAZwySWPYFI4iAhYXBnMxIK43O64B5PdKvYlgD5k744v7Q2Gg+G+KoOSxZLHwlpM-jFVFs1lM8z8IA noborder}} </WRAP>
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 686: Zeile 694:
 Circuit analysis via differential equation yields: Circuit analysis via differential equation yields:
  
-$\boxed{U_{\rm O} = - R \cdot C \frac{d}{dt}U_{\rm I}}$+$\boxed{U_{\rm O} = - R \cdot C \frac{\rm d}{{\rm d}t}U_{\rm I}}$
  
 With complex calculation, the transfer function becomes: With complex calculation, the transfer function becomes:
Zeile 716: Zeile 724:
 ===== 5.4 High Pass Filter ===== ===== 5.4 High Pass Filter =====
  
-A high pass filter can be created from the inverting differentiator, if the purely capacitive impedance for $Z_1$ is suitably extended via a resistive component (<imgref pic12_1>). The simulation above shows this high pass. A reverse integrator forms from this with switch $S1$ closed and switch $S2$ open. When the switch is inverted, an inverting amplifier is formed. In the simulation, clicking on a frequency point again shows the distribution of the currents.+A high pass filter can be created from the inverting differentiator, if the purely capacitive impedance for $Z_1$ is suitably extended via a resistive component (<imgref pic12_1>). The simulation above shows this high pass. A reverse integrator forms from this with switch $\rm S1$ closed and switch $\rm S2$ open. When the switch is inverted, an inverting amplifier is formed. In the simulation, clicking on a frequency point again shows the distribution of the currents.
  
 <WRAP><panel type="default">  <WRAP><panel type="default"> 
Zeile 755: Zeile 763:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-===== 5.5 Overview high pass filter / low pass filter =====+===== 5.5 Overview high pass Filter / low pass Filter =====
  
 <WRAP><panel type="default">  <WRAP><panel type="default"> 
-<imgcaption pic13| Overview high pass filter/ low pass filter>+<imgcaption pic13| Overview high pass Filter / low pass Filter>
 </imgcaption> </imgcaption>
 \\ {{drawio>Übersicht_Hochpass_Tiefpass.svg}} \\ {{drawio>Übersicht_Hochpass_Tiefpass.svg}}
Zeile 800: Zeile 808:
  
 The amplification factors are: The amplification factors are:
-  * $A_{V1} =80$ +  * $A_{\rm V1} =80$ 
-  * $A_{V2} =0.0125$ +  * $A_{\rm V2} =0.0125$ 
-  * $A_{V3} =250'000$+  * $A_{\rm V3} =250'000$
  
 Calculate manually the resulting total amplification $A_{\rm V}$ as a linear factor and in $\rm dB$ ($A_{\rm V}^{\rm dB}$).  Calculate manually the resulting total amplification $A_{\rm V}$ as a linear factor and in $\rm dB$ ($A_{\rm V}^{\rm dB}$). 
Zeile 817: Zeile 825:
 <collapse id="Loesung_5_0_2_1_Solution" collapsed="true">  <collapse id="Loesung_5_0_2_1_Solution" collapsed="true"> 
 ^  Amp. Name $\rightarrow$ ^ lin. Factor $\rightarrow$^ re-arrange $\rightarrow$ ^ as exponents of $2$ and $10$ $\rightarrow$^  transfer into $\rm dB$  $\rightarrow$^  result in $\rm dB$  ^ ^  Amp. Name $\rightarrow$ ^ lin. Factor $\rightarrow$^ re-arrange $\rightarrow$ ^ as exponents of $2$ and $10$ $\rightarrow$^  transfer into $\rm dB$  $\rightarrow$^  result in $\rm dB$  ^
-|  $A_{V1}$   | $80$       | $8    \cdot 10$        | $2^3    \cdot 10^1$          | $ 3 \cdot 6~{\rm dB} +    \cdot 20~{\rm dB} $     | $ 38~{\rm dB}$         | +|  $A_{\rm V1}$   | $80$       | $8    \cdot 10$        | $2^3    \cdot 10^1$          | $ 3 \cdot 6~{\rm dB} +    \cdot 20~{\rm dB} $     | $ 38~{\rm dB}$         | 
-|  $A_{V2}$   | $0.0125$   | $0.125\cdot 0.1$       | $2^{-3} \cdot 10^{-1}$       | $-3 \cdot 6~{\rm dB} + (-1) \cdot 20~{\rm dB} $     | $-38~{\rm dB}$         | +|  $A_{\rm V2}$   | $0.0125$   | $0.125\cdot 0.1$       | $2^{-3} \cdot 10^{-1}$       | $-3 \cdot 6~{\rm dB} + (-1) \cdot 20~{\rm dB} $     | $-38~{\rm dB}$         | 
-|  $A_{V3}$   | $250'000$  | $0.25 \cdot 1'000'000$ | $2^{-2} \cdot 10^{6}$        | $-2 \cdot 6~{\rm dB} +    \cdot 20~{\rm dB} $     | $108~{\rm dB}$         |+|  $A_{\rm V3}$   | $250'000$  | $0.25 \cdot 1'000'000$ | $2^{-2} \cdot 10^{6}$        | $-2 \cdot 6~{\rm dB} +    \cdot 20~{\rm dB} $     | $108~{\rm dB}$         |
 </collapse> </collapse>
  
Zeile 843: Zeile 851:
       - Briefly describe the differences in the amplitude response of the gain $A_{\rm V}$.       - Briefly describe the differences in the amplitude response of the gain $A_{\rm V}$.
   - What happens if instead of $R= 10 ~\rm k\Omega$, $C = 1.6 ~\rm µF$ the same time constant is implemented with $R= 10 ~\rm M\Omega$, $C = 1.6 ~\rm nF$? Verify this by comparing the Bode plot of the LM318 operational amplifier.   - What happens if instead of $R= 10 ~\rm k\Omega$, $C = 1.6 ~\rm µF$ the same time constant is implemented with $R= 10 ~\rm M\Omega$, $C = 1.6 ~\rm nF$? Verify this by comparing the Bode plot of the LM318 operational amplifier.
-  - Simulate an inverting amplifier in Tina TI. To do this, replace the capacitor in the circuit with a resistor $R_2 = 10 \rm k\Omega$ and use the LM318 op-amp.+  - Simulate an inverting amplifier in Tina TI. To do this, replace the capacitor in the circuit with a resistor $R_2 = 10 ~\rm k\Omega$ and use the LM318 op-amp.
       - Attach the Bode diagram.       - Attach the Bode diagram.
       - What should the Bode diagram (amplitude and phase response) look like for an ideal inverting amplifier? What deviation do you notice in the real setup?       - What should the Bode diagram (amplitude and phase response) look like for an ideal inverting amplifier? What deviation do you notice in the real setup?