Beide Seiten der vorigen Revision Vorhergehende Überarbeitung | |
circuit_design:exercise_sheet_1 [2023/11/04 08:52] – [Bearbeiten - Panel] mexleadmin | circuit_design:exercise_sheet_1 [2023/11/04 08:54] (aktuell) – [Bearbeiten - Panel] mexleadmin |
---|
<WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> | <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> |
An amplifier circuit shall amplify a microphone signal so that a loudspeaker ($R_{\rm LS}= 8.0 ~\Omega$) can be driven. The [[https://en.wikipedia.org/wiki/Alternating_current#Root_mean_square_voltage|rms value]] of the desired voltage across the loudspeaker shall be $U_{\rm RMS, LS} = 10 ~\rm V$. It is assumed that a sinusoidal signal is to be output. The power is supplied by two voltage sources, with $V_{\rm S+} = 15 ~\rm V$ and $V_{\rm S-} = - 15 ~\rm V$. | An amplifier circuit shall amplify a microphone signal so that a loudspeaker ($R_{\rm LS}= 8.0 ~\Omega$) can be driven. The [[https://en.wikipedia.org/wiki/Alternating_current#Root_mean_square_voltage|rms value]] of the desired voltage across the loudspeaker shall be $U_{\rm RMS, LS} = 10 ~\rm V$. It is assumed that a sinusoidal signal is to be output. The power is supplied by two voltage sources, with $V_{\rm S+} = 15 ~\rm V$ and $V_{\rm S-} = - 15 ~\rm V$. |
For understanding (especially for tasks 2. and 3.), look at the simulation under the subchapter [[1_amplifier_basics#equivalent_circuit_diagram|equivalent circuit]] in chapter "1. amplifier basics". This example shows a realistic amplifier and the idealized current flow can be guessed from this. | For understanding (especially for tasks 2. and 3.), look at the simulation under the subchapter [[1_amplifier_basics#equivalent_circuit_diagram|equivalent circuit]] in chapter "1. amplifier basics". This example shows a realistic amplifier, and the idealized current flow can be guessed from this. |
| |
Draw a labeled sketch of the circuit with the amplifier as a black box.<WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> | Draw a labeled sketch of the circuit with the amplifier as a black box.<WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> |
1. What power (P) does the loudspeaker consume? <WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> | - What power (P) does the loudspeaker consume? <WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> |
From this, how can we determine the RMS current $I_{\rm RMS, S}$ of the power supply at which the above-desired voltage $U_{\rm RMS, LS}$ is output at the loudspeaker? <WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> | - From this, how can we determine the RMS current $I_{\rm RMS, S}$ of the power supply at which the above-desired voltage $U_{\rm RMS, LS}$ is output at the loudspeaker? <WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> |
2. Determine from the previous task the maximum current $I_{\rm max, S}$ for which the two power supplies must be designed at least. \\ (Note that for simple amplifiers, the output current $I_\rm O$ is always less than or equal to the current $I_\rm S$ of the power supply.) <WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> | - Determine from the previous task the maximum current $I_{\rm max, S}$ for which the two power supplies must be designed at least. \\ (Note that for simple amplifiers, the output current $I_\rm O$ is always less than or equal to the current $I_\rm S$ of the power supply.) <WRAP onlyprint> \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </WRAP> |
</WRAP></WRAP></panel> | </WRAP></WRAP></panel> |
| |