Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Letzte Überarbeitung Beide Seiten der Revision
circuit_design:rechnung_betragundphase_umkehrintegrator [2021/09/26 19:19]
tfischer
circuit_design:rechnung_betragundphase_umkehrintegrator [2023/01/31 18:37]
mexleadmin
Zeile 1: Zeile 1:
-~~REVEAL theme=white&fade=fade&controls=1&show_progress_bar=1&build_all_lists=1&show_image_borders=1&horizontal_slide_level=2&enlarge_vertical_slide_headers=0&show_slide_details=0&open_in_new_window=1&size=2400x168~~+~~REVEAL~~
  
 ----> ---->
-|$U_A = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} \color{blue}{U_E(t)} \ dt + U_{A0}$|insert sine function|$ \color{blue}{U_E(t)}= \hat{U}_E \cdot sin(\omega \cdot t)$| +| $\;$ \\ $\;$ \\ $\;$ |$U_O = -{ 1 \over {R\cdot C} }\cdot\int_{t_0}^{t_1} \color{blue}{U_I(t)} \ dt + U_{A0}$| 
-|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|+| $\;$ \\ $\;$ \\ $\;$ | insert sine function: \\ $ \color{blue}{U_I(t)}= \hat{U}_I \cdot sin(\omega \cdot t)$| 
 +|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-|$U_A = -{ 1 \over {R\cdot C} }\cdot\color{blue}{\int_{t_0}^{t_1} \hat{U}_E \cdot sin(\omega \cdot t) \ dt} + U_{A0}$|insert root function with limits|$\color{blue}{\int_{x_0}^{x_1} sin(a \cdot x) \ dx} = [- {1 \over a} \cdot cos(a \cdot x) ]_{x_0}^{x_1}$| +| $\;$ \\ $\;$ \\ $\;$ |$U_O = -{ 1 \over {R\cdot C} }\cdot\color{blue}{\int_{t_0}^{t_1} \hat{U}_I \cdot sin(\omega \cdot t) \ dt} + U_{A0}$| 
-|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|+| $\;$ \\ $\;$ \\ $\;$ |insert root function with limits \\  $\color{blue}{\int_{x_0}^{x_1} sin(a \cdot x) \ dx} = [- {1 \over a} \cdot cos(a \cdot x) ]_{x_0}^{x_1}$| 
 +|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-|$U_A = -{ 1 \over {R\cdot C} }\cdot [- \color{blue}{\hat{U}_E \over \omega} \cdot cos(\omega \cdot t) ]_{t_0}^{t_1} + U_{A0}$ |put constant before \\ integral| | +| $\;$ \\ $\;$ \\ $\;$ |$U_O = -{ 1 \over {R\cdot C} }\cdot [- \color{blue}{\hat{U}_I \over \omega} \cdot cos(\omega \cdot t) ]_{t_0}^{t_1} + U_{A0}$ | 
-|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|+| $\;$ \\ $\;$ \\ $\;$ | put constant before integral| 
 +| |$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-|$U_A = { 1 \over {R\cdot C} }\cdot {\hat{U}_E \over \omega} \cdot \color{blue}{[ cos(\omega \cdot t) ]_{t_0}^{t_1}} + U_{A0}$ |insert limits|$t_0=0$, $t_1=t$| +| $\;$ \\ $\;$ \\ $\;$ |$U_O = { 1 \over {R\cdot C} }\cdot {\hat{U}_I \over \omega} \cdot \color{blue}{[ cos(\omega \cdot t) ]_{t_0}^{t_1}} + U_{A0}$| 
-|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|+| $\;$ \\ $\;$ \\ $\;$ |insert limits$t_0=0$, $t_1=t$| 
 +|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-|$U_A = {{{\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot (} cos(\omega \cdot t) - \color{blue}{cos(0)} ) + U_{A0}$  | |$\color{blue}{cos(0)}=1$| +| $\;$ \\ $\;$ \\ $\;$ |$U_O = {{{\hat{U}_I } \over {\omega \cdot R\cdot C} } \cdot (} cos(\omega \cdot t) - \color{blue}{cos(0)} ) + U_{A0}$| 
-|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|+| $\;$ \\ $\;$ \\ $\;$ | $\color{blue}{cos(0)}=1$| 
 +|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-|$U_A = \color{blue}{{{ \hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot (} cos(\omega \cdot t) - 1 \color{blue}{)} + U_{A0}$ |multiply| +| $\;$ \\ $\;$ \\ $\;$ |$U_O = \color{blue}{{{ \hat{U}_I } \over {\omega \cdot R\cdot C} } \cdot (} cos(\omega \cdot t) - 1 \color{blue}{)} + U_{A0}$ | 
-|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|+| $\;$ \\ $\;$ \\ $\;|multiply| 
 +|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-|$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_E } \over {\omega \cdot R\cdot C}} + U_{A0}}$ |consider the \\ non-cosine terms| +| $\;$ \\ $\;$ \\ $\;$ |$U_O = { {\hat{U}_I } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_I } \over {\omega \cdot R\cdot C}} + U_{A0}}$ | 
-|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|+| $\;$ \\ $\;$ \\ $\;|consider the non-cosine terms: \\ The blue part is independent in time. \\ We assume purely sinusoidal quantities! | 
 +|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-|$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_E } \over {\omega \cdot R\cdot C}} + U_{A0}}$ |This part is independent in time. Since we assume purely sinusoidal quantities, \the for the initial voltage of the capacitor must be: $U_{C0} = U_{A0}={{\hat{U}_E} \over {\omega \cdot R\cdot C}}$|| +| $\;$ \\ $\;$ \\ $\;$ |$U_O = { {\hat{U}_I } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t) \color{blue}{-{ {\hat{U}_I } \over {\omega \cdot R\cdot C}} + U_{A0}}$ | 
-|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|+| $\;$ \\ $\;$ \\ $\;$ | $\rightarrow$ initial voltage of the capacitor: \\ $U_{C0} = U_{A0}={{\hat{U}_I} \over {\omega \cdot R\cdot C}}$|| 
 +|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----
  
 ----> ---->
-|$U_A = { {\hat{U}_E } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t)$+| $\;$ \\ $\;$ \\ $\;$ |$U_O = { {\hat{U}_I } \over {\omega \cdot R\cdot C} } \cdot cos(\omega \cdot t)$|  
-|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad$|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|+| $\;$ \\ $\;$ \\ $\;| | 
 +|$\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$|
 <---- <----