Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
dummy_2 [2022/09/26 18:41]
tfischer
dummy_2 [2022/11/04 14:41] (aktuell)
tfischer
Zeile 1: Zeile 1:
 ====== 2. Simple DC circuits ====== ====== 2. Simple DC circuits ======
-tst  
  
-<WRAP>  +tst 
-<imgcaption BildNr91 | Example of a circuit> + 
-</imgcaption> +<WRAP> <imgcaption BildNr91 | Example of a circuit> </imgcaption> {{drawio>BeispieleStromkreis}} </WRAP>
-{{drawio>BeispieleStromkreis}} +
-</WRAP>+
  
-So far, only simple circuits consisting of a source and a load connected by wires have been considered. \\ In the following, more complicated circuit arrangements will be analysed. These initially contain only one source, but several lines and many ohmic loads (cf. <imgref BildNr91>).+So far, only simple circuits consisting of a source and a load connected by wires have been considered.\\ 
 +In the following, more complicated circuit arrangements will be analysed. These initially contain only one source, but several lines and many ohmic loads (cf. <imgref BildNr91>).
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 19: Zeile 17:
  
 By the end of this section, you will be able to: By the end of this section, you will be able to:
 +
   - Know the representation of ideal current and voltage sources in the U-I diagram.   - Know the representation of ideal current and voltage sources in the U-I diagram.
   - Know the internal resistance of ideal current and voltage sources.   - Know the internal resistance of ideal current and voltage sources.
Zeile 27: Zeile 26:
  
 Every electrical circuit consists of three elements: Every electrical circuit consists of three elements:
 +
   - **Consumers**: consumers convert electrical energy into energy that is not purely electrical. \\ e.g.   - **Consumers**: consumers convert electrical energy into energy that is not purely electrical. \\ e.g.
-    - into electrostatic energy (capacitor) +      - into electrostatic energy (capacitor) 
-    - into magnetostatic energy (magnet) +      - into magnetostatic energy (magnet) 
-    - into electromagnetic energy (LED, light bulb) +      - into electromagnetic energy (LED, light bulb) 
-    - into mechanical energy (loudspeaker, motor) +      - into mechanical energy (loudspeaker, motor) 
-    - into chemical energy (charging an accumulator)+      - into chemical energy (charging an accumulator)
   - **sources (generators)**: sources convert energy from another form of energy into electrical energy. (e.g. generator, battery, photovoltaic).   - **sources (generators)**: sources convert energy from another form of energy into electrical energy. (e.g. generator, battery, photovoltaic).
   - **wires (interconnections)**: the wires of interconnection lines link consumers to sources.   - **wires (interconnections)**: the wires of interconnection lines link consumers to sources.
- 
 These elements will be considered in more detail below. These elements will be considered in more detail below.
  
Zeile 43: Zeile 42:
   * A resistor is often also referred to as a consumer. In addition to pure ohmic consumers, however, there are also ohmic-inductive consumers (e.g. coils in a motor) or ohmic-capacitive consumers (e.g. various power supplies using capacitors at the output). Correspondingly the equation "consumer is a resistor" is wrong.   * A resistor is often also referred to as a consumer. In addition to pure ohmic consumers, however, there are also ohmic-inductive consumers (e.g. coils in a motor) or ohmic-capacitive consumers (e.g. various power supplies using capacitors at the output). Correspondingly the equation "consumer is a resistor" is wrong.
   * Current-voltage characteristics (vgl. <imgref BildNr4>)   * Current-voltage characteristics (vgl. <imgref BildNr4>)
-    * Current-voltage characteristics of a load always run through the origin, because without current there is no voltage and vice versa. +      * Current-voltage characteristics of a load always run through the origin, because without current there is no voltage and vice versa. 
-    * Ohmic loads have a linear current-voltage characteristic which can be described by a single numerical value. \\ The slope in the $U$-$I$-characteristic is the conductance: $I = G \cdot U = {{U}\over{R}}$+      * Ohmic loads have a linear current-voltage characteristic which can be described by a single numerical value. \\ The slope in the $U$-$I$-characteristic is the conductance: $I = G \cdot U = {{U}\over{R}}$
  
-<WRAP> +<WRAP> <imgcaption BildNr4 | Examples of current-voltage characteristics> </imgcaption> {{drawio>BeispieleStromSpannungsKennlinie}} </WRAP>
-<imgcaption BildNr4 | Examples of current-voltage characteristics> +
-</imgcaption> +
-{{drawio>BeispieleStromSpannungsKennlinie}} +
-</WRAP>+
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 59: Zeile 54:
  
 Ideal Sources Ideal Sources
 +
 {{youtube>8_AWiueI4Qg}} {{youtube>8_AWiueI4Qg}}
  
-\\ + \\ <WRAP group><WRAP column 45%> <imgcaption BildNr6 | ideal voltage source> </imgcaption> {{drawio>IdealeSpannungsquelle}} </WRAP> <WRAP column 45%>
-<WRAP group><WRAP column 45%> +
-<imgcaption BildNr6 | ideal voltage source> +
-</imgcaption> +
-{{drawio>IdealeSpannungsquelle}} +
-</WRAP> +
-<WRAP column 45%>+
  
-<imgcaption BildNr7 | ideal current source> +<imgcaption BildNr7 | ideal current source> </imgcaption> {{drawio>IdealeStromquelle}}
-</imgcaption> +
-{{drawio>IdealeStromquelle}}+
  
 </WRAP></WRAP></WRAP> </WRAP></WRAP></WRAP>
  
   * Sources act as generators of electrical energy   * Sources act as generators of electrical energy
-  * A distinction is made between ideal and real sources. \\ The real sources are described in the following chapter "[[non-ideal_sources_and_two_terminal_networks]]".+  * A distinction is made between ideal and real sources. \\ The real sources are described in the following chapter "[[:non-ideal_sources_and_two_terminal_networks|]]".
  
-The **ideal voltage source** generates a defined constant output voltage $U_s$ (in German often $U_q$ for Quellenspannung). +The **ideal voltage source**  generates a defined constant output voltage $U_s$ (in German often $U_q$ for Quellenspannung). In order to maintain this voltage, it can supply any current. The current-voltage characteristic also represents this (see <imgref BildNr6>). \\ The circuit symbol shows a circle with two terminals. In the circuit, the two terminals are short-circuited. \\ Another circuit symbol shows the negative terminal of the voltage source as a "thick minus symbol", the positive terminal is drawn wider.
-In order to maintain this voltage, it can supply any current. +
-The current-voltage characteristic also represents this (see <imgref BildNr6>). \\ +
-The circuit symbol shows a circle with two terminals. In the circuit, the two terminals are short-circuited. \\ +
-Another circuit symbol shows the negative terminal of the voltage source as a "thick minus symbol", the positive terminal is drawn wider.+
  
-The **ideal current source** produces a defined constant output current $I_s$ (in German often $I_q$ for Quellenstrom). +The **ideal current source**  produces a defined constant output current $I_s$ (in German often $I_q$ for Quellenstrom). For this current to flow, any voltage can be applied to its terminals. The current-voltage characteristic also represents this (see <imgref BildNr7>). \\ The circuit symbol shows again a circle with two connections. This time the two connections are left open in the circle and a line is drawn perpendicular to them.
-For this current to flow, any voltage can be applied to its terminals. +
-The current-voltage characteristic also represents this (see <imgref BildNr7>). \\ +
-The circuit symbol shows again a circle with two connections. This time the two connections are left open in the circle and a line is drawn perpendicular to them.+
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 99: Zeile 80:
  
 <callout> <callout>
 +
 === Learning Objectives === === Learning Objectives ===
  
 By the end of this section, you will be able to: By the end of this section, you will be able to:
 +
   - apply and distinguish between the producer and consumer reference arrow systems (German: Erzeuger-Pfeilsystem und Verbraucher-Pfeilsystem).   - apply and distinguish between the producer and consumer reference arrow systems (German: Erzeuger-Pfeilsystem und Verbraucher-Pfeilsystem).
   - similarly use passive and active sign convention.   - similarly use passive and active sign convention.
 +
 </callout> </callout>
  
-In the chapter [[preparation_properties_proportions|1. Preparation and Proportions]] the  direction of conventional current and voltages has already been discussed. Unfortunately, with meshed networks it is often not clear ahead of the calculation in which direction the conventional sense of direction of all currents and voltages runs. +In the chapter [[:preparation_properties_proportions|1. Preparation and Proportions]] the direction of conventional current and voltages has already been discussed. Unfortunately, with meshed networks it is often not clear ahead of the calculation in which direction the conventional sense of direction of all currents and voltages runs.
  
 In <imgref BildNr5> such a meshed net is shown. In this circuit a switch $S_1$ and a current $I_2$ are marked. Once the state of the switch is swapped, the direction of the current changes. In <imgref BildNr5> such a meshed net is shown. In this circuit a switch $S_1$ and a current $I_2$ are marked. Once the state of the switch is swapped, the direction of the current changes.
  
-<WRAP> +<WRAP> <imgcaption BildNr5 | Example of a circuit> </imgcaption> \\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxEJRCQBZsAoAJxDqsJvA0JGO8hBRpITTt14hsacMSr9Mw5pP5gZEwnnA0OyhHBGsKHGuJQI+LDHubHup7kumyQBKxKkqqNMPfVRwQhRYTMxZvNQ1+dUCUGmVVbzlYvzAAkQcPASTsbHMzVxj+bO4vHwiLEQKJHP8NTCcweHoANxqBDCowLh5zfiT+JH4YMARiYeM6SBl6AGUBPFr8TLlF5RAAMwBDABsAZwBTPxR6AHc5hY101WikwQ4EtqdsYmFT+8qU2vaoE-BCOS+Pg9vgAPAQjaQQTBIFRGTIgab0UHYGjkFIQbAIDQpWFSI5Ip7gFISFGE2gSfgASXo2Es4U0HGweDuKCxfheEiZrQM7BBbTuxFqeCQaAgHHc9CAA noborder}} </WRAP>
-<imgcaption BildNr5 | Example of a circuit> +
-</imgcaption> \\ +
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxEJRCQBZsAoAJxDqsJvA0JGO8hBRpITTt14hsacMSr9Mw5pP5gZEwnnA0OyhHBGsKHGuJQI+LDHubHup7kumyQBKxKkqqNMPfVRwQhRYTMxZvNQ1+dUCUGmVVbzlYvzAAkQcPASTsbHMzVxj+bO4vHwiLEQKJHP8NTCcweHoANxqBDCowLh5zfiT+JH4YMARiYeM6SBl6AGUBPFr8TLlF5RAAMwBDABsAZwBTPxR6AHc5hY101WikwQ4EtqdsYmFT+8qU2vaoE-BCOS+Pg9vgAPAQjaQQTBIFRGTIgab0UHYGjkFIQbAIDQpWFSI5Ip7gFISFGE2gSfgASXo2Es4U0HGweDuKCxfheEiZrQM7BBbTuxFqeCQaAgHHc9CAA noborder}} +
-</WRAP>+
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 120: Zeile 100:
 ==== Sign and Arrow Systems ==== ==== Sign and Arrow Systems ====
  
-For the direction of the arrows different conventions are available. Here (and quite often in Germany) the [[https://en.wikipedia.org/wiki/Passive_sign_convention#Alternative_convention_in_power_engineering|convention of power engineering]] is used.  +For the direction of the arrows different conventions are available. Here (and quite often in Germany) the [[https://en.wikipedia.org/wiki/Passive_sign_convention#Alternative_convention_in_power_engineering|convention of power engineering]] is used. This convention is
-This convention is +
  
 === Generator Reference Arrow System / Active sign convention === === Generator Reference Arrow System / Active sign convention ===
  
-<WRAP group><WRAP column 45%> +<WRAP group><WRAP column 45%> <callout color="grey"> <WRAP> <imgcaption BildNr2 | Generator Arrow System> </imgcaption> {{drawio>Erzeugerpfeilsystem}} </WRAP>
-<callout color="grey"> +
-<WRAP> +
-<imgcaption BildNr2 | Generator Arrow System> +
-</imgcaption> +
-{{drawio>Erzeugerpfeilsystem}} +
-</WRAP>+
  
-With **sources** (or generators), energy is taken __from__ the environment and made available to the circuit. \\ +With **sources**  (or generators), energy is taken __from__  the environment and made available to the circuit. \\ For generators, the arrow__foot__  of the current is attached to the arrow__head__  of the voltage. Voltage and current arrows are antiparallel ($\uparrow \downarrow$). \\ Similarly, the active sign convention for one component states: The current enters the component on the more negative terminal. Or vise versa: The current exits the component on the positive terminal.
-For generators, the arrow__foot__ of the current is attached to the arrow__head__ of the voltage. Voltage and current arrows are antiparallel ($\uparrow \downarrow$). \\ +
-Similarly, the active sign convention for one component states: The current enters the component on the more negative terminal. Or vise versa: The current exits the component on the positive terminal.+
  
 Both expressions "generator arrow system" and "active sign convention" come to te same result, when drawing the arrows. Both expressions "generator arrow system" and "active sign convention" come to te same result, when drawing the arrows.
  
-For generators holds: +For generators holds: $P_{1} = U_{12} \cdot I_1 \stackrel{!}{>} 0$
-$P_{1} = U_{12} \cdot I_1 \stackrel{!}{>} 0$+
  
-The power transfer from the environment to the power system __via the generator or the generator arrow system__ is calculated positively.+The power transfer from the environment to the power system __via the generator or the generator arrow system__  is calculated positively.
  
-</callout> +</callout> </WRAP><WRAP column 45%
-</WRAP><WRAP column 45%>+ 
 +<callout color="grey"> <WRAP> <imgcaption BildNr3 | Load Arrow System> </imgcaption> {{drawio>Verbraucherpfeilsystem}} </WRAP>
  
-<callout color="grey"> 
-<WRAP> 
-<imgcaption BildNr3 | Load Arrow System> 
-</imgcaption> 
-{{drawio>Verbraucherpfeilsystem}} 
-</WRAP> 
 === Load Reference Arrow System === === Load Reference Arrow System ===
  
-In the case of **consumers**, energy is taken from the circuit and made available to the environment. \\ +In the case of **consumers**, energy is taken from the circuit and made available to the environment. \\ For consumers, the arrow__foot__  or arrow__head__  of the current and voltage are related. Voltage and current arrows are parallel ($\uparrow \uparrow$). Here we have to use the passive sign convention: The current enters the component on the more positive terminal. Or vise versa: The current exits the component on the negative terminal.
-For consumers, the arrow__foot__ or arrow__head__ of the current and voltage are related. Voltage and current arrows are parallel ($\uparrow \uparrow$). +
-Here we have to use the passive sign convention: The current enters the component on the more positive terminal. Or vise versa: The current exits the component on the negative terminal.+
  
 Both expressions again come to te same result, when drawing the arrows. Both expressions again come to te same result, when drawing the arrows.
Zeile 167: Zeile 130:
 The power transfer from the power system to the environment via the consumer or the consumer arrow system is also calculated positively. The power transfer from the power system to the environment via the consumer or the consumer arrow system is also calculated positively.
  
-</callout> +</callout> </WRAP></WRAP>
-</WRAP></WRAP>+
  
-<callout icon="fa fa-exclamation" color="red" title="Note:"> +<callout icon="fa fa-exclamation" color="red" title="Note:"> <WRAP> <imgcaption BildNr1 | Reference arrows> </imgcaption> {{drawio>Bezugspfeile1}} </WRAP> 
-<WRAP> + 
-<imgcaption BildNr1 | Reference arrows> +  * **Before the calculation,**  the __reference arrows__  for currents and voltages are set arbitrarily, with the following conditions: 
-</imgcaption> +      * the active sign convention / generator arrow system is used for all sources (e.g. all voltage and current sources): the current is antiparallel to the voltage arrow. 
-{{drawio>Bezugspfeile1}} +      * the passive sign convention / motor arrow system is used for all consumers (e.g. all passives like resistors, capacitors, inductors, diodes etc.): the current is parallel to the voltage arrow. 
-</WRAP>+      * for loads, where the direction of the power is not known, the motor arrow system is recommented (e.g. passives, in case what these are part of a machine, like inductors of a motor) 
 +  * **After the calculation**  means 
 +      * $I>0$: The reference arrow reflects the conventional directional sense of the current 
 +      * $I<0$: The reference arrow points in the opposite direction to the conventional directional sense of the current 
 +  * Reference arrows of the current are drawn **in**  the wire if possible.
  
-  * **Before the calculation,** the __reference arrows__ for currents and voltages are set arbitrarily, with the following conditions: 
-    * the active sign convention / generator arrow system is used for all sources (e.g. all voltage and current sources): the current is antiparallel to the voltage arrow. 
-    * the passive sign convention / motor arrow system is used for all consumers (e.g. all passives like resistors, capacitors, inductors, diodes etc.): the current is parallel to the voltage arrow. 
-    * for loads, where the direction of the power is not known, the motor arrow system is recommented (e.g. passives, in case what these are part of a machine, like inductors of a motor) 
-  * **After the calculation** means 
-    * $I>0$: The reference arrow reflects the conventional directional sense of the current 
-    * $I<0$: The reference arrow points in the opposite direction to the conventional directional sense of the current 
-  * Reference arrows of the current are drawn **in** the wire if possible. 
 </callout> </callout>
  
 +<WRAP> The reference arrow system (in the clip '+' and '-' is shown in the component terminal. We will instead use voltage arrows from plus to minus)
  
-<WRAP> 
-The reference arrow system (in the clip '+' and '-' is shown in the component terminal. We will instead use voltage arrows from plus to minus) 
 {{youtube>nXyCffP8PXQ}} {{youtube>nXyCffP8PXQ}}
-</WRAP>  
  
-~~PAGEBREAK~~ ~~CLEARFIX~~+</WRAP>
  
 +~~PAGEBREAK~~ ~~CLEARFIX~~
  
 ===== 2.3 Nodes, Branches and Loops ===== ===== 2.3 Nodes, Branches and Loops =====
  
-<WRAP> +<WRAP> Explanation of the different network structures \\ (Graphs and trees are only needed in later chapters) nodes 
-Explanation of the different network structures \\ +
-(Graphs and trees are only needed in later chapters) +
-nodes +
 {{youtube>-82UNytyrCQ}} {{youtube>-82UNytyrCQ}}
 +
 </WRAP> </WRAP>
  
 <callout> <callout>
 +
 === Learning Objectives === === Learning Objectives ===
  
 By the end of this section, you will be able to: By the end of this section, you will be able to:
 +
   - identify the nodes, branches and loops in a circuit.   - identify the nodes, branches and loops in a circuit.
   - use them to reshape a circuit.   - use them to reshape a circuit.
Zeile 216: Zeile 174:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-<WRAP> +<WRAP> <imgcaption BildNr0 | circuitry and mesh> </imgcaption> \\ {{drawio>Stromkreise_Stromnetze}}
-<imgcaption BildNr0 | circuitry and mesh> +
-</imgcaption> \\ +
-{{drawio>Stromkreise_Stromnetze}}+
  
-<imgcaption BildNr8 | nodes, branches and loops> +<imgcaption BildNr8 | nodes, branches and loops> </imgcaption> \\ {{drawio>KnotenZweigeMaschen}} </WRAP>
-</imgcaption> \\ +
-{{drawio>KnotenZweigeMaschen}} +
-</WRAP>+
  
 Electrical circuits typically have the structure of networks. Networks consist of two elementary structural elements: Electrical circuits typically have the structure of networks. Networks consist of two elementary structural elements:
-  - <fc #cd5c5c>**Branches**</fc> (German: Zweige): Connections between two nodes.  + 
-  - <fc #6495ed>**Node**</fc> (German: Knoten): Connection "point" of several branches. +  - <fc #cd5c5c>**Branches**</fc> (German: Zweige): Connections between two nodes. 
 +  - <fc #6495ed>**Node**</fc> (German: Knoten): Connection "point" of several branches.
  
 Please note in the case of electrical circuits, we will use the following definition: Please note in the case of electrical circuits, we will use the following definition:
  
   - <fc #cd5c5c>**Branches**</fc> contain at least one component.   - <fc #cd5c5c>**Branches**</fc> contain at least one component.
-  - <fc #6495ed>**Nodes**</fc> connect __more than two branches__. Since the wire in a circuit diagram is an ideal conductor, all connected wires to a node are at the same voltage level. Therefore the node in the circuit diagramm can also be spatially extended by the wires. +  - <fc #6495ed>**Nodes**</fc> connect __more than two branches__. Since the wire in a circuit diagram is an ideal conductor, all connected wires to a node are at the same voltage level. Therefore the node in the circuit diagramm can also be spatially extended by the wires.
  
 Sometimes there is a differentiation between "simple nodes" (only connecting 2 branches) and "principal nodes" (connecting more than 2 branches). We will in the following often only mark the connection of more than two branches with a node. Sometimes there is a differentiation between "simple nodes" (only connecting 2 branches) and "principal nodes" (connecting more than 2 branches). We will in the following often only mark the connection of more than two branches with a node.
  
-Branches in electrical networks are also called two-terminal network. +Branches in electrical networks are also called two-terminal network. Their behaviour is described by current-voltage characteristics and explained in more detail in the chapter [[:non-ideal_sources_and_two_terminal_networks|]] .
-Their behaviour is described by current-voltage characteristics and explained in more detail in the chapter [[non-ideal_sources_and_two_terminal_networks]] .+
  
-In addition, another term is to be explained: \\+In addition, another term is to be explained:
  
-A **<fc #ffa500>loop</fc>** is a closed path in the loop. This means that a loop begins and ends at the same node and runs over at least one further node.+A **<fc #ffa500>loop</fc>**  is a closed path in the loop. This means that a loop begins and ends at the same node and runs over at least one further node.
  
 Since a voltmeter can also be present as a component between two nodes, it is also possible to close a loop by a drawn voltage arrow (cf. $U_1$ in <imgref BildNr8>). Since a voltmeter can also be present as a component between two nodes, it is also possible to close a loop by a drawn voltage arrow (cf. $U_1$ in <imgref BildNr8>).
Zeile 248: Zeile 200:
 A loop which does not contain other (smaller) loops is called a mesh. A loop which does not contain other (smaller) loops is called a mesh.
  
-~~PAGEBREAK~~ ~~CLEARFIX~~ +~~PAGEBREAK~~ ~~CLEARFIX~~ Please keep in mind, that usually the entire behaviour of networked circuits almost always changes when a change occurs in one branch or at one node. This is in contrast to other cause-effect relationships, but comparable to changes in other larger networks, e.g. a traffic jam in the road network, due to which other roads experience a higher load. For electrical engineering, this means that in the case of changing circuits, the focus is often on determining the interrelationships (formulas, current-voltage characteristics) and not on a single numerical value.
-Please keep in mind, that usually the entire behaviour of networked circuits almost always changes when a change occurs in one branch or at one node. This is in contrast to other cause-effect relationships, but comparable to changes in other larger networks, e.g. a traffic jam in the road network, due to which other roads experience a higher load. For electrical engineering, this means that in the case of changing circuits, the focus is often on determining the interrelationships (formulas, current-voltage characteristics) and not on a single numerical value.+
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 255: Zeile 206:
 ==== Reshaping the circuits ==== ==== Reshaping the circuits ====
  
-<WRAP> +<WRAP> <imgcaption BildNr9 | Example of circuit conversion> {{:elektrotechnik_1:umwandlungeinerschaltung.gif}}</imgcaption> </WRAP>
-<imgcaption BildNr9 | Example of circuit conversion> +
-{{elektrotechnik_1:umwandlungeinerschaltung.gif}} +
-</imgcaption> +
-</WRAP>+
  
-With the knowledge of nodes, branches and meshes, circuits can be simplified. +With the knowledge of nodes, branches and meshes, circuits can be simplified. Circuits can be reshaped arbitrarily as long as all branches remain at the same nodes after reshaping The <imgref BildNr9> shows how such a transformation is possible.
-Circuits can be reshaped arbitrarily as long as all branches remain at the same nodes after reshaping +
-The <imgref BildNr9> shows how such a transformation is possible.+
  
-For practical tasks, repeated trial and error can be useful. +For practical tasks, repeated trial and error can be useful. It is important to check afterwards that the same components are connected to each node as before the transformation.
-It is important to check afterwards that the same components are connected to each node as before the transformation.+
  
 Further examples can be found in the following video Further examples can be found in the following video
 +
 {{youtube>PnzijvMQmE8}} {{youtube>PnzijvMQmE8}}
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-<panel type="info" title="Exercise 2.3.1 Branches and Nodes"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +<panel type="info" title="Exercise 2.3.1 Branches and Nodes"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <WRAP> <imgcaption BildNr70 | Branches and Nodes> </imgcaption> {{drawio>ZweigeundKnoten}} </WRAP>
-<WRAP> +
-<imgcaption BildNr70 | Branches and Nodes> +
-</imgcaption> +
-{{drawio>ZweigeundKnoten}} +
-</WRAP>+
  
 For the markings in the circuits in <imgref BildNr70> indicate whether it is a branch, a node, or neither. For the markings in the circuits in <imgref BildNr70> indicate whether it is a branch, a node, or neither.
Zeile 287: Zeile 227:
  
 {{youtube>GNumiT_Y4B8}} {{youtube>GNumiT_Y4B8}}
 +
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
 +<panel type="info" title="Exercise 2.3.3 Reshaping circuits"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <WRAP> <imgcaption BildNr71 | more Branches and Nodes> </imgcaption> {{drawio>SchaltungenVereinfachen}} </WRAP>
  
-<panel type="info" title="Exercise 2.3.3 Reshaping circuits"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> +Reshape the circuits in <imgref BildNr71>. </WRAP></WRAP></panel>
-<WRAP> +
-<imgcaption BildNr71 | more Branches and Nodes> +
-</imgcaption> +
-{{drawio>SchaltungenVereinfachen}} +
-</WRAP> +
- +
-Reshape the circuits in <imgref BildNr71> +
-</WRAP></WRAP></panel> +
  
 ===== 2.4 Kirchhoff's circuit laws ===== ===== 2.4 Kirchhoff's circuit laws =====
  
 +<WRAP> {{https://en.wikipedia.org/wiki/Kirchhoff's circuit laws|Kirchhoff's circuit laws}}
  
-<WRAP> 
-{{wp>Kirchhoff's circuit laws}} 
 {{youtube>d0O-KUKP4nM}} {{youtube>d0O-KUKP4nM}}
-</WRAP> + 
 +</WRAP>
  
 <callout> <callout>
 +
 === Learning Objectives === === Learning Objectives ===
  
-By the end of this section, you will be able to: +By the end of this section, you will be able to: Know and apply Kirchhof's circuit laws (Kirchhoff's current law and Kirchhoff's voltage law). </callout>
- Know and apply Kirchhof's circuit laws (Kirchhoff's current law and Kirchhoff's voltage law). +
-</callout>+
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
-==== Kirchhoff's current law  ==== 
  
-The Kirchhoff's current law (Kirchhoff's first law, Kirchhoff's nodal rule, in German: Knotensatz) formulates in the language of mathematics the experience that no charge "accumulations" occur in electrical wires. +==== Kirchhoff's current law ====
-This is of particular relevance at a network node (<imgref BildNr10>). +
-To formulate the equation at this node, the reference arrows of the currents are all set in the same way. +
-That means: all point away from or towards the node.+
  
-<callout icon="fa fa-exclamation" color="red" title="Note:"> +The Kirchhoff's current law (Kirchhoff's first law, Kirchhoff's nodal rule, in German: Knotensatz) formulates in the language of mathematics the experience that no charge "accumulations" occur in electrical wires. This is of particular relevance at a network node (<imgref BildNr10>). To formulate the equation at this node, the reference arrows of the currents are all set in the same way. That means: all point away from or towards the node. 
-<WRAP> + 
-<imgcaption BildNr10 | Kirchhoff's current law> +<callout icon="fa fa-exclamation" color="red" title="Note:"> <WRAP> <imgcaption BildNr10 | Kirchhoff's current law> </imgcaption> {{drawio>Knotensatz}} </WRAP>
-</imgcaption> +
-{{drawio>Knotensatz}} +
-</WRAP>+
  
 The sum of all currents flowing from the nodes must be zero. The sum of all currents flowing from the nodes must be zero.
Zeile 336: Zeile 261:
  
 From now on, the following definition applies: From now on, the following definition applies:
 +
   * Currents whose current arrows point towards the node are added in the calculation.   * Currents whose current arrows point towards the node are added in the calculation.
   * Currents whose current arrows point away from the node are subtracted in the calculation.   * Currents whose current arrows point away from the node are subtracted in the calculation.
 +
 </callout> </callout>
  
-<WRAP> +<WRAP> <imgcaption BildNr11 | Parallel circuit> </imgcaption> {{drawio>Parallelschaltung}} </WRAP>
-<imgcaption BildNr11 | Parallel circuit> +
-</imgcaption> +
-{{drawio>Parallelschaltung}} +
-</WRAP>+
  
 === Parallel circuit of resistors === === Parallel circuit of resistors ===
Zeile 364: Zeile 287:
 === Current divider === === Current divider ===
  
-<WRAP> +<WRAP> Derivation of the current divider with examples 
-Derivation of the current divider with examples+
 {{youtube>VojwBoSHc8U}} {{youtube>VojwBoSHc8U}}
 +
 </WRAP> </WRAP>
  
-The current divider rule can also be derived from the Kirchhoff's current law. \\ +The current divider rule can also be derived from the Kirchhoff's current law. \\ This states that, for resistors $R_1, ... R_n$ their currents $I_1, ... I_n$ behave just like the conductances $G_1, ... G_n$ through which they flow.
-This states that, for resistors $R_1, ... R_n$ their currents $I_1, ... I_n$ behave just like the conductances $G_1, ... G_n$ through which they flow. \\+
  
-$\large{{I_1}\over{I_g}} = {{G_1}\over{G_g}}$ +$\large{{I_1}\over{I_g}} = {{G_1}\over{G_g}}$
  
 $\large{{I_1}\over{I_2}} = {{G_1}\over{G_2}}$ $\large{{I_1}\over{I_2}} = {{G_1}\over{G_2}}$
  
-This can also be derived by the Kirchhoff's current law: The voltage drop $U$ on parallel resistors $R_1, ... R_n$ is the same. When $U_1 = U_2 = ... = U$, then also $R_1 \cdot I_1 = R_2 \cdot I_2 = ... = R_{eq} \cdot I_{res}$. \\ +This can also be derived by the Kirchhoff's current law: The voltage drop $U$ on parallel resistors $R_1, ... R_n$ is the same. When $U_1 = U_2 = ... = U$, then also $R_1 \cdot I_1 = R_2 \cdot I_2 = ... = R_{eq} \cdot I_{res}$. \\ Therefore, we get with the conductance: ${{I_1} \over {G_1}} = {{I_2} \over {G_2}}= ... = {{I_{eq}} \over {G_{res}}}$
-Therefore, we get with the conductance: ${{I_1} \over {G_1}} = {{I_2} \over {G_2}}= ... = {{I_{eq}} \over {G_{res}}}$+
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
- 
  
 <panel type="info" title="Exercise 2.4.1 Current divider"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.4.1 Current divider"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-<WRAP> +<WRAP> <imgcaption BildNr85| Current divider> </imgcaption> \\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsBMA2AzAgnAdjBgBxhgK7q64gKTXWQBQATiCgmuLh2xxpACxRwcBmHKt2nbpLApCQqkiS0V0JADUA9gBsALgEMA5gFMGhibwzTeCFFAYB3CyD6CeLq+GYvbUn3dchMHhHfxcBMIxPMDNIzywA30YnQLEbOzT7J3dM1K4s50ywNFpMxhZi2hQUQUrnUpCnOtSSjw4Y82bo1oSCupyeiMYAZ3BW6trWsvAQADN9bWHTIA noborder}} </WRAP>
-<imgcaption BildNr85| Current divider> +
-</imgcaption> \\ +
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsBMA2AzAgnAdjBgBxhgK7q64gKTXWQBQATiCgmuLh2xxpACxRwcBmHKt2nbpLApCQqkiS0V0JADUA9gBsALgEMA5gFMGhibwzTeCFFAYB3CyD6CeLq+GYvbUn3dchMHhHfxcBMIxPMDNIzywA30YnQLEbOzT7J3dM1K4s50ywNFpMxhZi2hQUQUrnUpCnOtSSjw4Y82bo1oSCupyeiMYAZ3BW6trWsvAQADN9bWHTIA noborder}} +
-</WRAP>+
  
 In the simulation in <imgref BildNr85> a current divider can be seen. The resistances are just inversely proportional to the currents flowing through it. In the simulation in <imgref BildNr85> a current divider can be seen. The resistances are just inversely proportional to the currents flowing through it.
  
-  - What currents would you expect in each branch if the input voltage were lowered from $5V$ to $3.3V$? __After__ thinking about your result, you can adjust the ''Voltage'' (bottom right of the simulation) accordingly by moving the slider. +  - What currents would you expect in each branch if the input voltage were lowered from $5V$ to $3.3V$? __After__  thinking about your result, you can adjust the ''Voltage''  (bottom right of the simulation) accordingly by moving the slider. 
-  - Think about what would happen if you flipped the switch __before__ you flipped the switch. \\ After you flip the switch, how can you explain the current in the branch?+  - Think about what would happen if you flipped the switch __before__  you flipped the switch. \\ After you flip the switch, how can you explain the current in the branch?
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 399: Zeile 316:
 <panel type="info" title="Exercise 2.4.2 two resistors"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.4.2 two resistors"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Two resistors of $18\Omega$ and $2 \Omega$ are connected in parallel. The total current of the resistors is $3A$. \\ +Two resistors of $18\Omega$ and $2 \Omega$ are connected in parallel. The total current of the resistors is $3A$. \\ Calculate the total resistance and how the currents is split to the branches. 
-Calculate the total resistance and how the currents is split to the branches.+ 
 +</WRAP></WRAP></panel> \\ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-</WRAP></WRAP></panel> 
-\\  
-~~PAGEBREAK~~ ~~CLEARFIX~~ 
 ==== Kirchhoff's voltage law ==== ==== Kirchhoff's voltage law ====
  
-Also the Kirchhoff's voltage law (also called: Kirchhoff's second law, or loop law) describes in mathematical language another practical experience: +Also the Kirchhoff's voltage law (also called: Kirchhoff's second law, or loop law) describes in mathematical language another practical experience: Between two points $1$ and $2$ of a network there is only one potential difference. Thus the potential difference is in particular independent of the way a network is traversed between the two points $1$ and $2$. This can be described by considering the meshes.
-Between two points $1$ and $2$ of a network there is only one potential difference. +
-Thus the potential difference is in particular independent of the way a network is traversed between the two points $1$ and $2$. +
-This can be described by considering the meshes.+
  
-<callout icon="fa fa-exclamation" color="red" title="Note:"> +<callout icon="fa fa-exclamation" color="red" title="Note:"> <WRAP> <imgcaption BildNr12 | loop law> </imgcaption> {{drawio>Maschensatz}} </WRAP>
-<WRAP> +
-<imgcaption BildNr12 | loop law> +
-</imgcaption> +
-{{drawio>Maschensatz}} +
-</WRAP>+
  
 In any mesh of an electrical circuit, the sum of all voltages is always zero (<imgref BildNr12>): In any mesh of an electrical circuit, the sum of all voltages is always zero (<imgref BildNr12>):
Zeile 424: Zeile 331:
  
 To calculate this, a convention for the loop direction must be specified. Theoretically this can be chosen arbitrarily. In practice, often a specific direction (e.g. [[https://en.wikipedia.org/wiki/Mesh_analysis#Mesh_currents_and_essential_meshes|clockwise]]) is used. \\ To calculate this, a convention for the loop direction must be specified. Theoretically this can be chosen arbitrarily. In practice, often a specific direction (e.g. [[https://en.wikipedia.org/wiki/Mesh_analysis#Mesh_currents_and_essential_meshes|clockwise]]) is used. \\
-Independently, the following specification always applies: For voltage drop the inverse sign of a voltage risde has to be taken into account. +Independently, the following specification always applies: For voltage drop the inverse sign of a voltage risde has to be taken into account. For example: 
-For example: + 
-  * Voltages, whose voltage arrows point __in__ the direction of circulation are __added__ in the calculation. +  * Voltages, whose voltage arrows point __in__  the direction of circulation are __added__  in the calculation. 
-  * Voltages, whose voltage arrows point __against__ the direction of rotation are __subtracted__ in the calculation.+  * Voltages, whose voltage arrows point __against__  the direction of rotation are __subtracted__  in the calculation. 
 </callout> </callout>
  
 === Proof of Kirchhoff's voltage law === === Proof of Kirchhoff's voltage law ===
  
-If one expresses the voltage in <imgref BildNr12> dby the potentials in the nodes, we get: +If one expresses the voltage in <imgref BildNr12> dby the potentials in the nodes, we get: $U_{12}= \varphi_1 - \varphi_2 $ \\ $U_{23}= \varphi_2 - \varphi_3 $ \\ $U_{34}= \varphi_3 - \varphi_4 $ \\ $U_{41}= \varphi_4 - \varphi_1 $
-$U_{12}= \varphi_1 - \varphi_2 $ \\ +
-$U_{23}= \varphi_2 - \varphi_3 $ \\ +
-$U_{34}= \varphi_3 - \varphi_4 $ \\ +
-$U_{41}= \varphi_4 - \varphi_1 $+
  
 If these voltages are added, this leads to Kirchhoff's voltage law. If these voltages are added, this leads to Kirchhoff's voltage law.
  
-$U_{12}+U_{23}+U_{34}+U_{41} = 0$ \\ \\+$U_{12}+U_{23}+U_{34}+U_{41} = 0$ \\
  
 === Series circuit of resistors === === Series circuit of resistors ===
  
-<WRAP> +<WRAP> <imgcaption BildNr13 | series circuit> </imgcaption> {{drawio>Reihenschaltung}} </WRAP>
-<imgcaption BildNr13 | series circuit> +
-</imgcaption> +
-{{drawio>Reihenschaltung}} +
-</WRAP>+
  
 Using Kirchhoff's voltage law, the total resistance of a series circuit (in German: Reihenschaltung, see <imgref BildNr13>) can be easily determined: Using Kirchhoff's voltage law, the total resistance of a series circuit (in German: Reihenschaltung, see <imgref BildNr13>) can be easily determined:
Zeile 458: Zeile 358:
 Since in series ciruit the current through all resistors must be the same - i.e. $I_1 = I_2 = ... = I$ - it follows that: Since in series ciruit the current through all resistors must be the same - i.e. $I_1 = I_2 = ... = I$ - it follows that:
  
-$R_1 + R_2 + ... + R_n = R_{eq} =  \sum_{x=1}^{n} R_x $+$R_1 + R_2 + ... + R_n = R_{eq} = \sum_{x=1}^{n} R_x $
  
 __In general__: The equivalent resistance of a series circuit is always greater than the greatest resistance.. __In general__: The equivalent resistance of a series circuit is always greater than the greatest resistance..
Zeile 466: Zeile 366:
 <panel type="info" title="Exercise 2.4.3 Three Resistors"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.4.3 Three Resistors"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Three equal resistors of $20k\Omega$ each are given. \\ +Three equal resistors of $20k\Omega$ each are given. \\ Which values are realizable by arbitrary interconnection of one to three resistors?
-Which values are realizable by arbitrary interconnection of one to three resistors?+
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-===== 2.5  Unloaded and loaded voltage divider =====+===== 2.5 Unloaded and loaded voltage divider ===== 
 + 
 +<WRAP> Why are voltage dividers important? (a cutout from 0:00 to 10:56 from a full video of EEVblog, starting from 17:00 there is also a nice example for troubles with voltage dividers..)
  
-<WRAP> 
-Why are voltage dividers important? (a cutout from 0:00 to 10:56 from a full video of EEVblog, starting from 17:00 there is also a nice example for troubles with voltage dividers..) 
 {{youtube>xSRe_4TQbuo?end=655}} {{youtube>xSRe_4TQbuo?end=655}}
-</WRAP> + 
-<callout>+</WRAP> <callout>
  
 ==== The unloaded voltage divider ==== ==== The unloaded voltage divider ====
Zeile 484: Zeile 383:
  
 By the end of this section, you will be able to: By the end of this section, you will be able to:
 +
   - to distinguish between the loaded and unloaded voltage divider.   - to distinguish between the loaded and unloaded voltage divider.
   - to describe the differences between loaded and unloaded voltage dividers.   - to describe the differences between loaded and unloaded voltage dividers.
Zeile 489: Zeile 389:
 </callout> </callout>
  
 +<WRAP> <imgcaption BildNr14 | unloaded voltage divider> </imgcaption> {{drawio>unbelasteterSpannungsteiler}} </WRAP>
  
-<WRAP> +Especially the series ciruit of two resistors $R_1$ and $R_2$ shall be considered now. This situation occurs in many practical applications (e.g. {{https://en.wikipedia.org/wiki/potentiometer|potentiometer}} ). In <imgref BildNr14> this circuit is shown.
-<imgcaption BildNr14 | unloaded voltage divider> +
-</imgcaption> +
-{{drawio>unbelasteterSpannungsteiler}} +
-</WRAP> +
- +
-Especially the series ciruit of two resistors $R_1$ and $R_2$ shall be considered now. +
-This situation occurs in many practical applications (e.g. {{wp>potentiometer}}). +
-In <imgref BildNr14> this circuit is shown.+
  
 Via the Kirchhoff's voltage law we get Via the Kirchhoff's voltage law we get
Zeile 506: Zeile 399:
 The ratio $k={{R_1}\over{R_1 + R_2}}$ also corresponds to the position on a potentiometer. The ratio $k={{R_1}\over{R_1 + R_2}}$ also corresponds to the position on a potentiometer.
  
-~~PAGEBREAK~~ ~~CLEARFIX~~ +~~PAGEBREAK~~ ~~CLEARFIX~~ <panel type="info" title="Exercise 2.5.1 unloaded voltage divider"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
-<panel type="info" title="Exercise 2.5.1 unloaded voltage divider"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+
  
-<WRAP> +<WRAP> <imgcaption BildNr81| unloaded voltage divider> </imgcaption> \\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsAsB2ATAZgGw4QhmimJGOiApJSClgFABu4O1RGL1YaOUfK1JNWHQE9bihBZIk7rywY2CXhFJxkSAEoBTAM4BLXQBcAhgDsAxtvoB3EIoAc9zFJnOOkW68nspDny6edgpsGJJY-vZhUPQADn4+0REBHBDCcfaQTnKZTr5pMXZgrOA8uaW8QZzu5b6eAObeNdI+Dk6eimgJUZICob0gADq6w6O6AKoA+gD2AK5GXo4VPctVLcv5ZZ66KzmbleAgAGYmADa61kA noborder}} </WRAP>
-<imgcaption BildNr81| unloaded voltage divider> +
-</imgcaption> \\ +
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsAsB2ATAZgGw4QhmimJGOiApJSClgFABu4O1RGL1YaOUfK1JNWHQE9bihBZIk7rywY2CXhFJxkSAEoBTAM4BLXQBcAhgDsAxtvoB3EIoAc9zFJnOOkW68nspDny6edgpsGJJY-vZhUPQADn4+0REBHBDCcfaQTnKZTr5pMXZgrOA8uaW8QZzu5b6eAObeNdI+Dk6eimgJUZICob0gADq6w6O6AKoA+gD2AK5GXo4VPctVLcv5ZZ66KzmbleAgAGYmADa61kA noborder}} +
-</WRAP>+
  
 In the simulation in <imgref BildNr81> an unloaded voltage divider in the form of a potentiometer can be seen. The ideal voltage source provides $5V$. The potentiometer has a total resistance of $1K\Omega$. In the configuration shown, this is divided out to $500 \Omega$ and $500 \Omega$. In the simulation in <imgref BildNr81> an unloaded voltage divider in the form of a potentiometer can be seen. The ideal voltage source provides $5V$. The potentiometer has a total resistance of $1K\Omega$. In the configuration shown, this is divided out to $500 \Omega$ and $500 \Omega$.
-  - What voltage $U_{out}$ would you expect if the switch were closed? After thinking about your result, you can check it by closing the switch. + 
 +  - What voltage $U_{out}$ would you expect if the switch were closed? After thinking about your result, you can check it by closing the switch.
   - First think about what would happen if you would change the distribution of the resistors by moving the wiper ("intermediate terminal")? \\ You can check your assumption by using the slider at the bottom right of the simulation.   - First think about what would happen if you would change the distribution of the resistors by moving the wiper ("intermediate terminal")? \\ You can check your assumption by using the slider at the bottom right of the simulation.
   - At which position do you get a $U_{out} = 3.5V$?   - At which position do you get a $U_{out} = 3.5V$?
 +
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
 +
 ==== The loaded voltage divider ==== ==== The loaded voltage divider ====
  
-<WRAP> +<WRAP> <imgcaption BildNr15 | loaded voltage divider> </imgcaption> {{drawio>belasteterSpannungsteiler}} </WRAP>
-<imgcaption BildNr15 | loaded voltage divider> +
-</imgcaption> +
-{{drawio>belasteterSpannungsteiler}} +
-</WRAP>+
  
 If - in contrast to the above-mendtioned, unloaded voltage divider - a load $R_L$ is connected to the output terminals (<imgref BildNr15>), this load influences the output voltage. If - in contrast to the above-mendtioned, unloaded voltage divider - a load $R_L$ is connected to the output terminals (<imgref BildNr15>), this load influences the output voltage.
Zeile 538: Zeile 425:
 or on a potentiometer with $k$ and the sum of resistors $R_s = R_1 + R_2$: or on a potentiometer with $k$ and the sum of resistors $R_s = R_1 + R_2$:
  
-$ U_1 = \LARGE{{k \cdot U} \over { 1 + k \cdot (1-k) \cdot{{R_s}\over{R_L}}  }}$+$ U_1 = \LARGE{{k \cdot U} \over { 1 + k \cdot (1-k) \cdot{{R_s}\over{R_L}} }}$
  
-<WRAP> +<WRAP> <imgcaption BildNr65 | Voltage curve of the loaded voltage divider> </imgcaption> {{drawio>SpannungsverlaufBelasteterSpannungsteiler}} </WRAP> 
-<imgcaption BildNr65 | Voltage curve of the loaded voltage divider> + 
-</imgcaption> +<imgref BildNr65> shows the ratio of the output voltage $U_1$ to the input voltage $U$ (y-axis), in relation to the ratio $k={{R_1}\over{R_1 + R_2}}$. In principle, this is similar to <imgref BildNr14>, but here it has another dimension: multiple graphs are plotted. These differ by the ratio ${{R_s}\over{R_L}}$.
-{{drawio>SpannungsverlaufBelasteterSpannungsteiler}} +
-</WRAP>+
  
-<imgref BildNr65> shows the ratio of the output voltage $U_1$ to the input voltage $U(y-axis)in relation to the ratio $k={{R_1}\over{R_1 + R_2}}$.  +What does this diagram tell us? This shall be investigated by an example. First, assume an unloaded voltage divider with $R_2 = 4 k\Omega$ and $R_1 = 6 k\Omega$, and an input voltage of $10V$. Thus $k = 0.6$, $R_s = 10k\Omega$ and $U_1 = 6V$. Now this voltage divider is loaded with a load resistor. If this is at $R_L = R_1 = 10 k\Omega$, $k$ reduces to about $0.48$ and $U_1$ reduces to $4.8V$ - so the output voltage drops. For $R_L = 4k\Omega$, $k$ becomes even smaller to $k=0.375$ and $U_1 = 3.75V$. If the load $R_L$ is only one tenth of the resistor $R_s=R_1 + R_2$, the result is $k=0.18$ and $U_1=1.8V$. The output voltage of the unloaded voltage divider ($6V$) thus became less than one third.
-In principlethis is similar to <imgref BildNr14>, but here it has another dimension: multiple graphs are plottedThese differ by the ratio ${{R_s}\over{R_L}}$.+
  
-What does this diagram tell us? This shall be investigated by an example. First, assume an unloaded voltage divider with $R_2 = 4 k\Omega$ and $R_1 = 6 k\Omega$, and an input voltage of $10V$. Thus $k = 0.6$, $R_s = 10k\Omega$ and $U_1 = 6V$. +What is the practical use of the (loaded) voltage divider? \\ Here some examples:
-Now this voltage divider is loaded with a load resistor. If this is at $R_L = R_1 = 10 k\Omega$, $k$ reduces to about $0.48$ and $U_1$ reduces to $4.8V$ - so the output voltage drops. For $R_L = 4k\Omega$, $k$ becomes even smaller to $k=0.375$ and $U_1 = 3.75V$. If the load $R_L$ is only one tenth of the resistor $R_s=R_1 + R_2$, the result is $k=0.18$ and $U_1=1.8V$. The output voltage of the unloaded voltage divider ($6V$) thus became less than one third.+
  
-What is the practical use of the (loaded) voltage divider? \\ Here some examples:  +  * Voltage dividers are in use for controlling the output of power supply IC's (see [[https://www.analog.com/en/technical-articles/a101121-voltage-dividers-in-power-supplies.html|Voltage Dividers in Power Supplies]]). In order not to create a loaded voltage divider, a range for the resistance is given here.
-  * Voltage dividers are in use for controlling the output of power supply IC's (see [[https://www.analog.com/en/technical-articles/a101121-voltage-dividers-in-power-supplies.html|Voltage Dividers in Power Supplies]]). In order not to create a loaded voltage divider, a range for the resistance is given here. +
   * Another "invisible" voltage divider is for example in the electical system of a car. As we will learn in the next chapters, voltage supplies have in internal resistance (and therefore batteries, too). The other consumer in the car also represent a resistance. By this, the electical system states an unloaded voltage divider. Given another, additional low-resistance load (e.g. the spark or the starter motor of the starter system) one can understand that there will be a voltage drop when starting the car.   * Another "invisible" voltage divider is for example in the electical system of a car. As we will learn in the next chapters, voltage supplies have in internal resistance (and therefore batteries, too). The other consumer in the car also represent a resistance. By this, the electical system states an unloaded voltage divider. Given another, additional low-resistance load (e.g. the spark or the starter motor of the starter system) one can understand that there will be a voltage drop when starting the car.
  
Zeile 566: Zeile 448:
 <panel type="info" title="Exercise 2.5.3 loaded voltage divider II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.5.3 loaded voltage divider II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-<WRAP> +<WRAP> <imgcaption BildNr82| loaded voltage divider> </imgcaption> \\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsAoAN3BppExRbbA0Kn5pUkVEdAT0ebXN14hsadgj4Qw8KGJAAlAKYBnAJa6ALgEMAdgGNt9AO7t87DJ2mPOkW6-CyXPPu7suHHIInEH+cgooKFIh7NFQ9AAOcnhsUVKpnhAi9ABOwaHx2LFhyHAexaFOKWnV4ZVxGWnx4WCsnmh4nq3tvvZdfe7JnV58I0HZCXYjfemjCbqN8xOyVBAAZiYANrrWaOTYmXOCVMcgADq6l9e6AKoA+gD2AK5G9ADmcpC1zt9fbO4gA noborder}} </WRAP>
-<imgcaption BildNr82| loaded voltage divider> +
-</imgcaption> \\ +
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsAoAN3BppExRbbA0Kn5pUkVEdAT0ebXN14hsadgj4Qw8KGJAAlAKYBnAJa6ALgEMAdgGNt9AO7t87DJ2mPOkW6-CyXPPu7suHHIInEH+cgooKFIh7NFQ9AAOcnhsUVKpnhAi9ABOwaHx2LFhyHAexaFOKWnV4ZVxGWnx4WCsnmh4nq3tvvZdfe7JnV58I0HZCXYjfemjCbqN8xOyVBAAZiYANrrWaOTYmXOCVMcgADq6l9e6AKoA+gD2AK5G9ADmcpC1zt9fbO4gA noborder}} +
-</WRAP>+
  
 In the simulation in <imgref BildNr82> a loaded voltage divider in the form of a potentiometer can be seen. The ideal voltage source provides $5V$. The potentiometer has a total resistance of $1k\Omega$. In the configuration shown, this is divided out to $500 \Omega$ and $500 \Omega$. The load resistance has $R_L = 1 k\Omega$. In the simulation in <imgref BildNr82> a loaded voltage divider in the form of a potentiometer can be seen. The ideal voltage source provides $5V$. The potentiometer has a total resistance of $1k\Omega$. In the configuration shown, this is divided out to $500 \Omega$ and $500 \Omega$. The load resistance has $R_L = 1 k\Omega$.
-  - What voltage ''U_OUT'' would you expect if the switch were closed? This is where you need to do some math! __After__ you calculated your result, you can check it by closing the switch.+ 
 +  - What voltage ''U_OUT''  would you expect if the switch were closed? This is where you need to do some math! __After__  you calculated your result, you can check it by closing the switch.
   - At which position of the wiper you get $3.5V$ as an output? Determine the result first by means of a calculation. \\ Then check it by moving the slider at the bottom right of the simulation.   - At which position of the wiper you get $3.5V$ as an output? Determine the result first by means of a calculation. \\ Then check it by moving the slider at the bottom right of the simulation.
 +
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
 <panel type="info" title="Exercise 2.5.4 Application of the loaded voltage divider - motor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.5.4 Application of the loaded voltage divider - motor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-<WRAP> +<WRAP> <imgcaption BildNr16| Sketch of the setup> </imgcaption> \\ {{drawio>MotorAmSpannungsteiler}} </WRAP>
-<imgcaption BildNr16| Sketch of the setup> +
-</imgcaption> \\ +
-{{drawio>MotorAmSpannungsteiler}} +
-</WRAP>+
  
 You wanted to test a micromotor for a small robot. Using the maximum current and the internal resistance ($R_M = 5\Omega$) you calculate that this can be operated with a maximum of $U_{M,max}=4V$. A colleague said that you can get $4V$ using the setup in <imgref BildNr16> from a $9V$ block battery. You wanted to test a micromotor for a small robot. Using the maximum current and the internal resistance ($R_M = 5\Omega$) you calculate that this can be operated with a maximum of $U_{M,max}=4V$. A colleague said that you can get $4V$ using the setup in <imgref BildNr16> from a $9V$ block battery.
 +
   - First, calculate the maximum current $I_{M,max}$ of the motor.   - First, calculate the maximum current $I_{M,max}$ of the motor.
   - Draw the corresponding electrical circuit with the motor connected as an ohmic resistor.   - Draw the corresponding electrical circuit with the motor connected as an ohmic resistor.
   - At the maximum current, the motor should be able to deliver a torque of $M_{max}=M(I_{M,max})= 100mNm$. What torque would the motor deliver if you implement the setup like this? (Assumption: The torque of the motor increases proportionally to the motor current).   - At the maximum current, the motor should be able to deliver a torque of $M_{max}=M(I_{M,max})= 100mNm$. What torque would the motor deliver if you implement the setup like this? (Assumption: The torque of the motor increases proportionally to the motor current).
   - What might a setup with a potentiometer look like that would actually allow you to set a voltage between $0.5V$ to $4V$ on the motor? What resistance value should the potentiometer have?   - What might a setup with a potentiometer look like that would actually allow you to set a voltage between $0.5V$ to $4V$ on the motor? What resistance value should the potentiometer have?
-  - Build and test your circuit in the simulation below. For an introduction to online simulation, see: [[circuit_design:0_tools#online_circuit_simulator]]. \\ You will essentially need the following tips for this setup: +  - Build and test your circuit in the simulation below. For an introduction to online simulation, see: [[:circuit_design:0_tools#online_circuit_simulator|online_circuit_simulator]]. \\  You will essentially need the following tips for this setup: 
-    - Routing connections can be activated via the menu: ''Draw'' >> ''add wire''. Afterwards you have to click on the start point and then drag to the end mode. +      - Routing connections can be activated via the menu: ''Draw''  >> ''add wire''. Afterwards you have to click on the start point and then drag to the end mode. 
-    - Note that connections can only ever be connected at nodes. A red marked node (e.g. at the $5 \Omega$ resistor) indicates that it is not connected. This could be moved one grid step to the left, as there is a node point there. +      - Note that connections can only ever be connected at nodes. A red marked node (e.g. at the $5 \Omega$ resistor) indicates that it is not connected. This could be moved one grid step to the left, as there is a node point there. 
-    - Pressing the ''<ESC>'' key will disable the insertion of components. +      - Pressing the ''<ESC>''  key will disable the insertion of components. 
-    - With a right click on a component it can be copied or values like the resistor can be changed via ''Edit....'' +      - With a right click on a component it can be copied or values like the resistor can be changed via ''Edit.''<WRAP> <imgcaption BildNr83| Simulation for motor setup> </imgcaption> \\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsDsKAc64YMyRWACyRIKQhKE4BQAbiIeiHoQ0wEzuvnnEgCcUITATUATuH7sQnVu0wyuQ0QHM2zSK0bMcANijUA7upYgsG7kfWyz5G+2pgUrJ-tOvmCaRDDxkSACUAUwBnAEsQgBcAQwA7AGMgq3ZIDhRpFI4lSCswKUUXFH0bHKA noborder}} </WRAP>
- +
-<WRAP> +
-<imgcaption BildNr83| Simulation for motor setup> +
-</imgcaption> \\ +
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsDsKAc64YMyRWACyRIKQhKE4BQAbiIeiHoQ0wEzuvnnEgCcUITATUATuH7sQnVu0wyuQ0QHM2zSK0bMcANijUA7upYgsG7kfWyz5G+2pgUrJ-tOvmCaRDDxkSACUAUwBnAEsQgBcAQwA7AGMgq3ZIDhRpFI4lSCswKUUXFH0bHKA noborder}} +
-</WRAP>+
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 607: Zeile 478:
  
 Exercise on the voltage divider Exercise on the voltage divider
 +
 {{youtube>6NG4uOMDU7Y}} {{youtube>6NG4uOMDU7Y}}
  
Zeile 623: Zeile 495:
 <WRAP> <WRAP>
  
-<imgcaption BildNr98 | Example of a circuit> +<imgcaption BildNr98 | Example of a circuit> </imgcaption> {{drawio>BeispielStromkreis}}
-</imgcaption> +
-{{drawio>BeispielStromkreis}}+
  
-<imgcaption BildNr17|Conversion of parallel circuit to series circuit> +<imgcaption BildNr17|Conversion of parallel circuit to series circuit> </imgcaption> \\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsDsKAc64YMyRWACyRIIRKE4BQATiALQ4BM4T6Dz4KAbFON92gDhVAOYcWTJoQkhpkKFQBKssGBaMWATl4KFxEEj3IEVAO6r1qtuHMMwWlmo0OnhGWGX3H4K-VcgOnz6CkbB0KYW-j5EMv7cCrGKUVIe7t5uMpBiGXKQ7NGSBtlRAUz5DKl57CX2CdW55TW0dYnp8QpNfGDwLYXg7WUVib109FVJ49INI3B2jAhOfjiLAx5eC0saK9q6fAZhehE5mw2n8opjO2scq10KOI-Qj9RXTjyyVYkCQsLcVEA noborder}}
-</imgcaption> \\ +
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWKsDsKAc64YMyRWACyRIIRKE4BQATiALQ4BM4T6Dz4KAbFON92gDhVAOYcWTJoQkhpkKFQBKssGBaMWATl4KFxEEj3IEVAO6r1qtuHMMwWlmo0OnhGWGX3H4K-VcgOnz6CkbB0KYW-j5EMv7cCrGKUVIe7t5uMpBiGXKQ7NGSBtlRAUz5DKl57CX2CdW55TW0dYnp8QpNfGDwLYXg7WUVib109FVJ49INI3B2jAhOfjiLAx5eC0saK9q6fAZhehE5mw2n8opjO2scq10KOI-Qj9RXTjyyVYkCQsLcVEA noborder}}+
  
 </WRAP> </WRAP>
Zeile 638: Zeile 506:
  
 By the end of this section, you will be able to: By the end of this section, you will be able to:
 +
   - convert triangular loops into a star shape (and vice versa)   - convert triangular loops into a star shape (and vice versa)
 +
 </callout> </callout>
  
Zeile 647: Zeile 517:
 Now how does this help us in the case of a $\Delta$-load (= triangular loop)? Now how does this help us in the case of a $\Delta$-load (= triangular loop)?
  
-Also in this case one can provide a black box. However, this should always behave in the same way as the $\Delta$-load, i.e. any voltages applied should produce the same currents as the known structure. \\ +Also in this case one can provide a black box. However, this should always behave in the same way as the $\Delta$-load, i.e. any voltages applied should produce the same currents as the known structure. \\ In other words: The resistances measured between two terminals must be identical for the blackbox and for the known circuit.
-In other words: The resistances measured between two terminals must be identical for the blackbox and for the known circuit.+
  
 For this purpose, the different resistances between the individual nodes $a$, $b$ and $c$ are now to be considered, see <imgref BildNr18>. The aim is to find out how a $\Delta$-load (triangular circuit) can be developed from a $Y$-load (star circuit) and vice versa. For this purpose, the different resistances between the individual nodes $a$, $b$ and $c$ are now to be considered, see <imgref BildNr18>. The aim is to find out how a $\Delta$-load (triangular circuit) can be developed from a $Y$-load (star circuit) and vice versa.
Zeile 654: Zeile 523:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-<WRAP> +<WRAP> <imgcaption BildNr18| Star-delta transformation> </imgcaption> \\ {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjA7CAMB00IQVhvCEAcGGYMzQjABZoUkA2EFI3KgUwFowwAoAJRCaKPAkqbAAmXpWgwQJCeLFwkLAO6diPSPzDkxq8CwBOnQRGFaGgwTzMzwiXUr4j9h+5ut6md46fOTnCBZ3wqdiZY9qwcDAH2EbiUWpaSKJayfiZmIAbCqeYU2uGe6Y5Z6SHxYsJJsHIc5DwkYgCclHXSEmI8FXKKNa1tGD3aruoSuJlDRNjiuFOwU7NTNkxNI5zdzWKzM3PzesvNi8PlIBtb84oMjf0ME81hnBd7Qn1r4gktyWdjF-vjmuxKTV8hkghC1JIcZJU-ON+rsEDAUtc4QxVnDoH5lKENE4-Bl7IIcnE-oJoH1BCFiX1IqV0m9IYoKcVSSSCkY-o97Bc4i8xIlpHTwGTQtxQjZ8bE7AyGetpidcKLmQz1Jo7NLcJstvKmVr0jlVeq5jiQlpcVpbmS+loRsrRNypB0WAAPFZkQVEMBUXDulRIMSAANJHfp6rRTPV9ORSbt0jw2ABOgMmCAqciZQTddTUcB9ACGKXNURNKpSSqipsLTuCtDAGFDJixYHqwlqYkAM6Txquh9v-WINqSSVvlwQxHXukxgYNIWqtED9pQYFDqWhuefkJqZkAAI3jgjAZSQKeg7vxGarIAAxrm0mL9JfvFvHIP+Pjg7hQyo+qec+Xiw+lG70i+pBPddzy-DBD0EGswByQdGyjEBYy3GhwGhUcLWBKQ0gQgdTHAJAUBMaAjCQJ41yzTcnXrZdKFMTRyFfOCsPSIZIGfcVVyAtEKNwUkd3AchgzHDDozjCikFDbcoEgcTiUA7NOPSfEo1JH1hyE+CRKjai8PScgUHxEiT1PeTiHnI1w3AeovSnGcoKTd11CTScT0-KMO34nU3PYvpyKjUzxPM+tYL7AMq3MCBNCDApaDfM8QouAwePEsDexbHEFWghVHGMuijgA-F3VwIhYJPABnAAXLMdAAHRK08AEsdFPABXOqyq3bopjUCBaCmeiTwAEzoAAbCqavqxqWra8sVMKqBtyOFSYvXIas1PABrdcAHsHRYIA noborder}} \\  \\ Calculation of the transformation formulae: Star connection in delta connection (Alternatively in [[https://www.youtube.com/watch?v=AFSWn5xR8tE|German]]) 
-<imgcaption BildNr18| Star-delta transformation> +
-</imgcaption> \\ +
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjA7CAMB00IQVhvCEAcGGYMzQjABZoUkA2EFI3KgUwFowwAoAJRCaKPAkqbAAmXpWgwQJCeLFwkLAO6diPSPzDkxq8CwBOnQRGFaGgwTzMzwiXUr4j9h+5ut6md46fOTnCBZ3wqdiZY9qwcDAH2EbiUWpaSKJayfiZmIAbCqeYU2uGe6Y5Z6SHxYsJJsHIc5DwkYgCclHXSEmI8FXKKNa1tGD3aruoSuJlDRNjiuFOwU7NTNkxNI5zdzWKzM3PzesvNi8PlIBtb84oMjf0ME81hnBd7Qn1r4gktyWdjF-vjmuxKTV8hkghC1JIcZJU-ON+rsEDAUtc4QxVnDoH5lKENE4-Bl7IIcnE-oJoH1BCFiX1IqV0m9IYoKcVSSSCkY-o97Bc4i8xIlpHTwGTQtxQjZ8bE7AyGetpidcKLmQz1Jo7NLcJstvKmVr0jlVeq5jiQlpcVpbmS+loRsrRNypB0WAAPFZkQVEMBUXDulRIMSAANJHfp6rRTPV9ORSbt0jw2ABOgMmCAqciZQTddTUcB9ACGKXNURNKpSSqipsLTuCtDAGFDJixYHqwlqYkAM6Txquh9v-WINqSSVvlwQxHXukxgYNIWqtED9pQYFDqWhuefkJqZkAAI3jgjAZSQKeg7vxGarIAAxrm0mL9JfvFvHIP+Pjg7hQyo+qec+Xiw+lG70i+pBPddzy-DBD0EGswByQdGyjEBYy3GhwGhUcLWBKQ0gQgdTHAJAUBMaAjCQJ41yzTcnXrZdKFMTRyFfOCsPSIZIGfcVVyAtEKNwUkd3AchgzHDDozjCikFDbcoEgcTiUA7NOPSfEo1JH1hyE+CRKjai8PScgUHxEiT1PeTiHnI1w3AeovSnGcoKTd11CTScT0-KMO34nU3PYvpyKjUzxPM+tYL7AMq3MCBNCDApaDfM8QouAwePEsDexbHEFWghVHGMuijgA-F3VwIhYJPABnAAXLMdAAHRK08AEsdFPABXOqyq3bopjUCBaCmeiTwAEzoAAbCqavqxqWra8sVMKqBtyOFSYvXIas1PABrdcAHsHRYIA noborder}} +
-\\ \\ +
-Calculation of the transformation formulae: Star connection in delta connection (Alternatively in [[https://www.youtube.com/watch?v=AFSWn5xR8tE|German]])+
 {{youtube>eBUWWU0Ekq4}} {{youtube>eBUWWU0Ekq4}}
  
Zeile 666: Zeile 531:
 ==== Delta circuit ==== ==== Delta circuit ====
  
-In the delta circuit, the 3 resistors $R_{ab}^1$, $R_{bc}^1$ and $R_{ca}^1$ are connected in a loop. At the connection of the resistors an additional terminal is implemented. \\ +In the delta circuit, the 3 resistors $R_{ab}^1$, $R_{bc}^1$ and $R_{ca}^1$ are connected in a loop. At the connection of the resistors an additional terminal is implemented. \\ The labeling with a superscript $\square^1$ refers to the three resistors in the next paragraphs.
-The labeling with a superscript $\square^1$ refers to the three resistors in the next paragraphs.+
  
 For the measurable resistance between two terminals (e.g. $R_{ab}$ between $a$ and $b$), the third terminal (here: $c$) is considered as not connected to anything outside. This results in a parallel circuit of the direct delta resistor $R_{ab}^1$ with the series connection of the other two delta resistors $R_{ca}^1 + R_{bc}^1$: For the measurable resistance between two terminals (e.g. $R_{ab}$ between $a$ and $b$), the third terminal (here: $c$) is considered as not connected to anything outside. This results in a parallel circuit of the direct delta resistor $R_{ab}^1$ with the series connection of the other two delta resistors $R_{ca}^1 + R_{bc}^1$:
  
-<WRAP><imgcaption BildNr80 | measurable resistance beweeen two terminals> +<WRAP><imgcaption BildNr80 | measurable resistance beweeen two terminals> </imgcaption> {{drawio>Resistancebetweentwoterminals}} </WRAP>
-</imgcaption> +
-{{drawio>Resistancebetweentwoterminals}} +
-</WRAP>+
  
-$R_{ab} = R_{ab}^1 || (R_{ca}^1 + R_{bc}^1) $ \\ +$R_{ab} = R_{ab}^1 || (R_{ca}^1 + R_{bc}^1) $ \\ $R_{ab} = {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + (R_{ca}^1 + R_{bc}^1)}} = {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} $
-$R_{ab} = {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + (R_{ca}^1 + R_{bc}^1)}} =  {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} $ \\+
  
 The same applies to the other connections. This results in: The same applies to the other connections. This results in:
  
-\begin{align*} +\begin{align*} R_{ab} = {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \\ R_{bc} = {{R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \\ R_{ca} = {{R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \tag{2.6.1} \end{align*}
-R_{ab} = {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}}  \\ +
-R_{bc} = {{R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}}  \\ +
-R_{ca} = {{R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \tag{2.6.1}  \end{align*}+
  
 ==== Star circuit ==== ==== Star circuit ====
Zeile 692: Zeile 549:
 Again, the procedure is the same as for the delta connection: the resistance between two terminals (e.g. $a$ and $b$) is determined, and the further terminal ($c$) is considered to be open. The resistance of the further terminal ($R_{c0}^1$) is only connected at one node. Therefore, no current flows through it - it is thus not to be considered. It results in: Again, the procedure is the same as for the delta connection: the resistance between two terminals (e.g. $a$ and $b$) is determined, and the further terminal ($c$) is considered to be open. The resistance of the further terminal ($R_{c0}^1$) is only connected at one node. Therefore, no current flows through it - it is thus not to be considered. It results in:
  
-\begin{align*} +\begin{align*} R_{ab} = R_{a0}^1 + R_{b0}^1 \\ R_{bc} = R_{b0}^1 + R_{c0}^1 \\ R_{ca} = R_{c0}^1 + R_{a0}^1 \tag{2.6.2} \end{align*}
-R_{ab} = R_{a0}^1 + R_{b0}^1  \\ +
-R_{bc} = R_{b0}^1 + R_{c0}^1  \\ +
-R_{ca} = R_{c0}^1 + R_{a0}^1  \tag{2.6.2}   +
-\end{align*}+
  
 From equations $(2.6.1)$ and $(2.6.2)$ we get: From equations $(2.6.1)$ and $(2.6.2)$ we get:
  
-\begin{align} R_{ab} = {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} = R_{a0}^1 + R_{b0}^1 \tag{2.6.3} \end{align} +\begin{align} R_{ab} = {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} = R_{a0}^1 + R_{b0}^1 \tag{2.6.3} \end{align} \begin{align} R_{bc} = {{R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} = R_{b0}^1 + R_{c0}^1 \tag{2.6.4} \end{align} \begin{align} R_{ca} = {{R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} = R_{c0}^1 + R_{a0}^1 \tag{2.6.5} \end{align}
-\begin{align} R_{bc} = {{R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} = R_{b0}^1 + R_{c0}^1 \tag{2.6.4} \end{align}   +
-\begin{align} R_{ca} = {{R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} = R_{c0}^1 + R_{a0}^1 \tag{2.6.5} \end{align}+
  
 +Equations $(2.6.3)$ to $(2.6.5)$ can now be cleverly combined so that there is only one resistor on one side. \\ A variation is to write the formulas as ${{1}\over{2}} \cdot \left( (2.6.3) + (2.6.4) - (2.6.5) \right)$ or ${{1}\over{2}} \cdot \left(R_{ab} + R_{bc} - R_{ca}\right)$ to combine. This gives $R_{b0}^1$
  
-Equations $(2.6.3)$ to $(2.6.5)$ can now be cleverly combined so that there is only one resistor on one side. \\ +\begin{align*} {{1}\over{2}} \cdot \left( {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} + {{R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} - {{R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) &= {{1}\over{2}} \cdot \left( R_{a0}^1 + R_{b0}^1 + R_{b0}^1 + R_{c0}^1 - R_{c0}^1 - R_{a0}^1 \right) \\ {{1}\over{2}} \cdot \left( {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1){R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1){R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) &{{1}\over{2}} \cdot \left( 2 \cdot R_{b0}^1 \right) \\ {{1}\over{2}} \cdot \left( {{R_{ab}^1 R_{ca}^1 R_{ab}^1 R_{bc}^1 + R_{bc}^1 R_{ab}^1 + R_{bc}^1 R_{ca}^1 - R_{ca}^1 R_{bc}^1 - R_{ca}^1 R_{ab}^1}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) &R_{b0}^1 \\ {{1}\over{2}} \cdot \left( {{ 2 \cdot R_{ab}^1 R_{bc}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) &= R_{b0}^1 \\ {{ R_{ab}^1 R_{bc}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} &= R_{b0}^1 \\ \end{align*}
-A variation is to write the formulas as ${{1}\over{2}} \cdot \left( (2.6.3) + (2.6.4) - (2.6.5) \right)$ or ${{1}\over{2}} \cdot \left(R_{ab} + R_{bc} - R_{ca}\right)$ to combine. This gives $R_{b0}^1\\+
  
-\begin{align*}  +Similarly, one can resolve to $R_{a0}^1$ and $R_{c0}^1$, and with a slightly modified approach to $R_{ab}^1$, $R_{bc}^1$ and $R_{ca}^1$.
-{{1}\over{2}} \cdot \left( {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} + {{R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} - {{R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) &= {{1}\over{2}} \cdot \left( R_{a0}^1 + R_{b0}^1 + R_{b0}^1 + R_{c0}^1 - R_{c0}^1 - R_{a0}^1 \right) \\+
  
-{{1}\over{2}} \cdot \left( {{R_{ab}^1 \cdot (R_{ca}^1 + R_{bc}^1)} + {R_{bc}^1 \cdot (R_{ab}^1 + R_{ca}^1)} {R_{ca}^1 \cdot (R_{bc}^1 + R_{ab}^1)}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) &{{1}\over{2}} \cdot \left( 2 \cdot  R_{b0}^1  \right) \\+==== Y-Δ-Transformation ====
  
-{{1}\over{2}} \cdot \left( {{R_{ab}^1 R_{ca}^1 + R_{ab}^1 R_{bc}^1 + R_{bc}^1 R_{ab}^1 + R_{bc}^1 R_{ca}^1 - R_{ca}^1 R_{bc}^1 - R_{ca}^1 R_{ab}^1}\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) & R_{b0}^1  \\ 
- 
-{{1}\over{2}} \cdot \left( {{ 2 \cdot R_{ab}^1 R_{bc}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \right) & R_{b0}^1  \\ 
- 
-{{ R_{ab}^1 R_{bc}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} & R_{b0}^1  \\ 
- 
-\end{align*} 
- 
-Similarly, one can resolve to $R_{a0}^1$ and $R_{c0}^1$, and with a slightly modified approach to $R_{ab}^1$, $R_{bc}^1$ and $R_{ca}^1$. 
- 
-==== Y-Δ-Transformation  ==== 
 <callout icon="fa fa-exclamation" color="red" title="Notice:"> <callout icon="fa fa-exclamation" color="red" title="Notice:">
  
-<WRAP> +<WRAP> If a **delta circuit is to be converted into a star circuit**, the star resistors can be determined via:
-If a **delta circuit is to be converted into a star circuit**, the star resistors can be determined via:+
  
-\begin{align*}  +\begin{align*} \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{star resistance} \\ \text{at the terminal x} \end{array} }}} &= {{ \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{product of} \\ \text{the delta resistances} \\ \text{connected with x} \end{array} }}} } \over { \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{sum of all} \\ \text{delta resistances} \end{array} }}}}} \\ \\ \text{therefore:}\quad\quad\quad\quad\quad\quad R_{a0}^1 &= {{ R_{ca}^1 \cdot R_{ab}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \\ R_{b0}^1 &= {{ R_{ab}^1 \cdot R_{bc}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \\ R_{c0}^1 &= {{ R_{bc}^1 \cdot R_{ca}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \end{align*}
-    \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{star resistance} \\ \text{at the terminal x} \end{array} }}} &= +
- {{ \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{product of} \\ \text{the delta resistances} \\ \text{connected with x} \end{array} }}} } \over  +
-  { \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{sum of all} \\ \text{delta resistances} \end{array} }}}}} \\ +
-\\ +
-\text{therefore:}\quad\quad\quad\quad\quad\quad  +
  
-R_{a0}^1 &= {{ R_{ca}^1 \cdot R_{ab}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \\ +</WRAP><WRAP> If a **star circuit is to be converted into a delta circuit**, the star resistors can be determined via:
-R_{b0}^1 &= {{ R_{ab}^1 \cdot R_{bc}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}} \\ +
-R_{c0}^1 &= {{ R_{bc}^1 \cdot R_{ca}^1 }\over{R_{ab}^1 + R_{ca}^1 + R_{bc}^1}}   +
-\end{align*}+
  
-</WRAP><WRAP> +\begin{align*} \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{delta resistance} \\ \text{between the} \\ \text{terminals x and y} \end{array} }}} &= {{ \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{sum of all} \\ \text{products between} \\ \text{varying star resistances} \end{array} }}} } \over { \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{star resistance} \\ \text{opposite x and y} \end{array} }}}}} \\ \\ \text{therefore:}\quad\quad\quad\quad\quad\quad R_{ab}^1 &= {{ R_{a0}^1 \cdot R_{b0}^1 +R_{b0}^1 \cdot R_{c0}^1 +R_{c0}^1 \cdot R_{a0}^1 }\over{ R_{c0}^1}} \\ R_{bc}^1 &= {{ R_{a0}^1 \cdot R_{b0}^1 +R_{b0}^1 \cdot R_{c0}^1 +R_{c0}^1 \cdot R_{a0}^1 }\over{ R_{a0}^1}} \\ R_{ca}^1 &= {{ R_{a0}^1 \cdot R_{b0}^1 +R_{b0}^1 \cdot R_{c0}^1 +R_{c0}^1 \cdot R_{a0}^1 }\over{ R_{b0}^1}} \end{align*}
-If a **star circuit is to be converted into a delta circuit**, the star resistors can be determined via:+
  
-\begin{align*}  +</WRAP> </callout>
-    \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{delta resistance} \\ \text{between the} \\ \text{terminals x and y} \end{array} }}} &= +
- {{ \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{sum of all} \\ \text{products between} \\ \text{varying star resistances} \end{array} }}} } \over  +
-  { \color{lightgray}{\boxed{ \color{black}{\begin{array}{} \text{star resistance} \\ \text{opposite x and y} \end{array} }}}}} \\ +
-\\ +
-\text{therefore:}\quad\quad\quad\quad\quad\quad   +
- +
-R_{ab}^1 &= {{ R_{a0}^1 \cdot R_{b0}^1 +R_{b0}^1 \cdot R_{c0}^1 +R_{c0}^1 \cdot R_{a0}^1 }\over{ R_{c0}^1}} \\ +
-R_{bc}^1 &= {{ R_{a0}^1 \cdot R_{b0}^1 +R_{b0}^1 \cdot R_{c0}^1 +R_{c0}^1 \cdot R_{a0}^1 }\over{ R_{a0}^1}} \\ +
-R_{ca}^1 &= {{ R_{a0}^1 \cdot R_{b0}^1 +R_{b0}^1 \cdot R_{c0}^1 +R_{c0}^1 \cdot R_{a0}^1 }\over{ R_{b0}^1}} +
-\end{align*} +
- +
-</WRAP> +
-</callout>+
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 763: Zeile 579:
 <panel type="info" title="Exercise 2.6.1 Application of delta-Y conversion"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.6.1 Application of delta-Y conversion"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-{{youtube>hM7oSuvdmyw}} +{{youtube>hM7oSuvdmyw}}{{youtube>tOCp2qAV8BI}} 
-{{youtube>tOCp2qAV8BI}}+
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
Zeile 780: Zeile 596:
  
 By the end of this section, you will be able to: By the end of this section, you will be able to:
 +
   - simplify circuits consisting only of resistors.   - simplify circuits consisting only of resistors.
   - calculate the voltages and currents in circuits with a voltage source and several resistors.   - calculate the voltages and currents in circuits with a voltage source and several resistors.
Zeile 786: Zeile 603:
 </callout> </callout>
  
-In this subchapter a methodology is discussed, which should help to reshape circuits. In subchapter [[#2.6 Star-Delta-Circuit]] towards the end a network was already transformed in a way, that it does not contain triangular meshes any more. Now this procedure shall be systematized. +In this subchapter a methodology is discussed, which should help to reshape circuits. In subchapter [[#star-delta-circuit|2.6 Star-Delta-Circuit]] towards the end a network was already transformed in a way, that it does not contain triangular meshes any more. Now this procedure shall be systematized. Starting point are tasks, where for a resistor network the total resistance, total current or total voltage has to be calculated.
-Starting point are tasks, where for a resistor network the total resistance, total current or total voltage has to be calculated.+
  
 ==== simple example ==== ==== simple example ====
Zeile 793: Zeile 609:
 An example of such a circuit is given in <imgref imageNo89>. Here $I_0$ is wanted. This current can be found by the (given) voltage $U_0$ and the total resistance between the terminals $a$ and $b$. So we are looking for $R_{ab}$. An example of such a circuit is given in <imgref imageNo89>. Here $I_0$ is wanted. This current can be found by the (given) voltage $U_0$ and the total resistance between the terminals $a$ and $b$. So we are looking for $R_{ab}$.
  
-<WRAP> +<WRAP> <imgcaption imageNo89 | example of a circuit> </imgcaption> {{drawio>BeispielStromkreis2}} </WRAP>
-<imgcaption imageNo89 | example of a circuit> +
-</imgcaption> +
-{{drawio>BeispielStromkreis2}} +
-</WRAP>+
  
 As already described in the previous subchapters, partial circuits can also be converted into equivalent resistors step by step. It is important to note that these partial circuits for conversion into equivalent resistors may only ever have two connections (= two nodes to the "outside world"). As already described in the previous subchapters, partial circuits can also be converted into equivalent resistors step by step. It is important to note that these partial circuits for conversion into equivalent resistors may only ever have two connections (= two nodes to the "outside world").
  
- +<WRAP> <imgcaption imageNo88 | Step by step solution of the example > </imgcaption> {{drawio>BeispielStromkreis2Loesung}} </WRAP> ~~PAGEBREAK~~ ~~CLEARFIX~~
-<WRAP> +
-<imgcaption imageNo88 | Step by step solution of the example > +
-</imgcaption> +
-{{drawio>BeispielStromkreis2Loesung}} +
-</WRAP> +
-~~PAGEBREAK~~ ~~CLEARFIX~~+
  
 <imgref imageNo88 > shows the step-by-step conversion of the equivalent resistors in this example. \\ As a result of the equivalent resistance one gets: <imgref imageNo88 > shows the step-by-step conversion of the equivalent resistors in this example. \\ As a result of the equivalent resistance one gets:
  
-\begin{align*} +\begin{align*} R_g = R_{12345} &= R_{12}||R_{345} = R_{12}||(R_3+R_{45}) = (R_1||R_2)||(R_3+R_4||R_5) \\ &= {{ {{R_1 \cdot R_2}\over{R_1 + R_2}} \cdot (R_3 + {{R_4 \cdot R_5}\over{R_4 + R_5}}) }\over{ {{R_1 \cdot R_2}\over{R_1 + R_2}} +R_3 + {{R_4 \cdot R_5}\over{R_4 + R_5}} }} \quad \quad \quad \quad \quad \quad \bigg\rvert \cdot{{(R_1 + R_2) \cdot (R_4 + R_5)}\over{(R_1 + R_2) \cdot (R_4 + R_5)}} \\ &= {{ R_1 \cdot R_2 \cdot (R_3 + {{R_4 \cdot R_5}\over{R_4 + R_5}}) \cdot (R_4 + R_5) } \over { R_1 \cdot R_2\cdot(R_4 + R_5) +R_3 + R_4 \cdot R_5 \cdot (R_1 + R_2)}} \\ &= {{ R_1 \cdot R_2 \cdot (R_3 \cdot (R_4 + R_5) + R_4 \cdot R_5) } \over { R_1 \cdot R_2\cdot(R_4 + R_5) +R_3 + R_4 \cdot R_5 \cdot (R_1 + R_2)}} \\ \end{align*}
-R_g = R_{12345} &= R_{12}||R_{345} = R_{12}||(R_3+R_{45}) =  (R_1||R_2)||(R_3+R_4||R_5) \\ +
-&= {{ {{R_1 \cdot R_2}\over{R_1 + R_2}} \cdot (R_3 + {{R_4 \cdot R_5}\over{R_4 + R_5}}) }\over{ {{R_1 \cdot R_2}\over{R_1 + R_2}} +R_3 + {{R_4 \cdot R_5}\over{R_4 + R_5}} }} \quad \quad \quad \quad \quad \quad \bigg\rvert \cdot{{(R_1 + R_2) \cdot (R_4 + R_5)}\over{(R_1 + R_2) \cdot (R_4 + R_5)}} \\ +
- +
-&= {{ R_1 \cdot R_2 \cdot (R_3 + {{R_4 \cdot R_5}\over{R_4 + R_5}}) \cdot (R_4 + R_5) } \over { R_1 \cdot R_2\cdot(R_4 + R_5) +R_3 + R_4 \cdot R_5 \cdot (R_1 + R_2)}} \\ +
-&= {{ R_1 \cdot R_2 \cdot (R_3 \cdot (R_4 + R_5) + R_4 \cdot R_5)  } \over { R_1 \cdot R_2\cdot(R_4 + R_5) +R_3 + R_4 \cdot R_5 \cdot (R_1 + R_2)}} \\ +
-  \end{align*}+
  
 ==== Example with Δ-Y-Transformation ==== ==== Example with Δ-Y-Transformation ====
Zeile 823: Zeile 623:
 With the Δ-Y-transformation now also the initial example can be transformed. For more complicated circuits, the repeated Δ-Y-transformation with subsequent combining of the resistors is useful, until the resulting circuit is easily calculable with node and mesh theorem (<imgref imageNo92>). Here a calculation is omitted - it is recommended to calculate here with intermediate results for the transformed resistors. With the Δ-Y-transformation now also the initial example can be transformed. For more complicated circuits, the repeated Δ-Y-transformation with subsequent combining of the resistors is useful, until the resulting circuit is easily calculable with node and mesh theorem (<imgref imageNo92>). Here a calculation is omitted - it is recommended to calculate here with intermediate results for the transformed resistors.
  
-<WRAP> +<WRAP> <imgcaption imageNo92 | example circuit conversion> </imgcaption> {{drawio>BeispielStromkreisUmgewandelt}} <WRAP>
-<imgcaption imageNo92 | example circuit conversion> +
-</imgcaption> +
-{{drawio>BeispielStromkreisUmgewandelt}} +
-<WRAP>+
  
 ==== Example with symmetries in the circuit ==== ==== Example with symmetries in the circuit ====
Zeile 833: Zeile 629:
 A certain special case concerns possible symmetries in circuits. If these are present, a further simplification can be made. A certain special case concerns possible symmetries in circuits. If these are present, a further simplification can be made.
  
-<WRAP> +<WRAP> <imgcaption imageNo40| Example with symmetries in the circuit> </imgcaption> <WRAP> {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjA7CAMB00IQVhvCEAcGGYMzQjABZoUkA2EFI3AKACcQBaSS15gJgg-AkunCIGzduxZ8QXHgLBCA7s3xFelJhywrwtAEqLoysblxsJAgSSowrcJLQVqNYqZujC13Te57OZQxuMpnL0kPXwQ3dmMMTg8oq1lw-2cg5ziw1392IMjyaPTaAHNmbBA4phKiMH5aAGdOCw4LNWhojhb4kAAzAEMAGxqAUztOdrbogJdhtQam5NC3EqCStMFE4oEynLzVjPWQngmfHYWZCQn2fP8SsUXQ4-tGjeMYnjSpsdL9EQkfWvqn1QfJQdHr9Ib2YjKR7fQLzCFgbztcqnap1FhEKFNMAIyTtGRdPqDKaQ0rPCZveGvL7I-YwP7o5RGVTYqnKfGgokAD2Y5BQHFwyiYSFwklwUAM0W0tG5TF5pQ4KCFItw6hAEpAUpl+A2HAO6miKuo4El0r0An5YE4Gn5ynVms4HAAnKVHXrIC6jWATTKwAKXSKWLqXZQ7aaWNjJOQA47nRxyCHjRqw76UFVFQiRVVoqGZfyZORBRwveByOLE-bxJa2oKwEhYwQ1eXk-HPumkIz2jmRlCoyJXZGE8WpZsJGJRDizLQytczirwKrJ9PzXcjq4ZeQvnGA3XvC2u0KW-hFUh259s02ZUhCLjBSf62Wh2Go-nBeRi1UH97mMLU3KhfyS3PR9LwjLdmCIGMB0bYDvz9XBHW3IN4MHL9ZSdF0DjfKB4M9VCIAQUVLVla0-X3fCdUwjRDWg1CiDlaimCIYV5SA2i5RtcDmP5T8k38IgZ1Ufjl2kY4+IE79R1MUTwNuA4r1hESEl2RjllyCTKBWJS3CE2kVI2NT8iKPTSjU4zKmqfx5N0qzNL8HkPCCUtXgM6ShQkMonJM7YtMsn4PFlBy7h8+yeDETyji0+xcmiMKPAuHRmHwgwzggZ4LisCwUDMVBbHsJLPGizQwDcKyxCsiK7LckxVE89KtLiJlSRDKpJAoawpzUuYeHM+dtlcOIPiBL4WXa7k00kR0oEgbCCK7fBlXdXBa3lcwLyg3UoUwSQuBopMxowVMkBkSbwGYrsuGdSBWkdS0vUtOaWq4ZVVS4FC9tKOi1WgZ1cCQbMcXOjFSggPk2rFVj3t9ULIJJNpurWtoRXUc1lvUEU5sg37xQjYxVpg4xYzrUoMCrch4cfRhfu8RpSiQbwNEuFbwH7BU2H7Rmqcka1ue8uzcAwRkBaZ-m2WkkXhaF8X8gUMB+1l0KN22tlCmJwW1bVOddn1LnWioun4js+XWrZ142gNtZtc5jbacUuzWeN5nvDaxmqnzN2lfN1wZaB12S3d1xdARGLFcdNhFeyzLrBy4Yg798AfcV4rGHto37ftxnrd9rPw-uD2s7l9mY4LxFWjxYZrczlnnfLmmK7ao2vZ1pvrc5xu07arq6QUduTaZxuVWOp3AmrhQrdrnmu5tqfxYHyfOfns2peGK2qMXs3+7X809ekcvRlGWuabbwL6d1vJl83prL-755Gvn-XXCAA noborder}} </WRAP>
-<imgcaption imageNo40| Example with symmetries in the circuit> +
-</imgcaption> <WRAP> +
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjA7CAMB00IQVhvCEAcGGYMzQjABZoUkA2EFI3AKACcQBaSS15gJgg-AkunCIGzduxZ8QXHgLBCA7s3xFelJhywrwtAEqLoysblxsJAgSSowrcJLQVqNYqZujC13Te57OZQxuMpnL0kPXwQ3dmMMTg8oq1lw-2cg5ziw1392IMjyaPTaAHNmbBA4phKiMH5aAGdOCw4LNWhojhb4kAAzAEMAGxqAUztOdrbogJdhtQam5NC3EqCStMFE4oEynLzVjPWQngmfHYWZCQn2fP8SsUXQ4-tGjeMYnjSpsdL9EQkfWvqn1QfJQdHr9Ib2YjKR7fQLzCFgbztcqnap1FhEKFNMAIyTtGRdPqDKaQ0rPCZveGvL7I-YwP7o5RGVTYqnKfGgokAD2Y5BQHFwyiYSFwklwUAM0W0tG5TF5pQ4KCFItw6hAEpAUpl+A2HAO6miKuo4El0r0An5YE4Gn5ynVms4HAAnKVHXrIC6jWATTKwAKXSKWLqXZQ7aaWNjJOQA47nRxyCHjRqw76UFVFQiRVVoqGZfyZORBRwveByOLE-bxJa2oKwEhYwQ1eXk-HPumkIz2jmRlCoyJXZGE8WpZsJGJRDizLQytczirwKrJ9PzXcjq4ZeQvnGA3XvC2u0KW-hFUh259s02ZUhCLjBSf62Wh2Go-nBeRi1UH97mMLU3KhfyS3PR9LwjLdmCIGMB0bYDvz9XBHW3IN4MHL9ZSdF0DjfKB4M9VCIAQUVLVla0-X3fCdUwjRDWg1CiDlaimCIYV5SA2i5RtcDmP5T8k38IgZ1Ufjl2kY4+IE79R1MUTwNuA4r1hESEl2RjllyCTKBWJS3CE2kVI2NT8iKPTSjU4zKmqfx5N0qzNL8HkPCCUtXgM6ShQkMonJM7YtMsn4PFlBy7h8+yeDETyji0+xcmiMKPAuHRmHwgwzggZ4LisCwUDMVBbHsJLPGizQwDcKyxCsiK7LckxVE89KtLiJlSRDKpJAoawpzUuYeHM+dtlcOIPiBL4WXa7k00kR0oEgbCCK7fBlXdXBa3lcwLyg3UoUwSQuBopMxowVMkBkSbwGYrsuGdSBWkdS0vUtOaWq4ZVVS4FC9tKOi1WgZ1cCQbMcXOjFSggPk2rFVj3t9ULIJJNpurWtoRXUc1lvUEU5sg37xQjYxVpg4xYzrUoMCrch4cfRhfu8RpSiQbwNEuFbwH7BU2H7Rmqcka1ue8uzcAwRkBaZ-m2WkkXhaF8X8gUMB+1l0KN22tlCmJwW1bVOddn1LnWioun4js+XWrZ142gNtZtc5jbacUuzWeN5nvDaxmqnzN2lfN1wZaB12S3d1xdARGLFcdNhFeyzLrBy4Yg798AfcV4rGHto37ftxnrd9rPw-uD2s7l9mY4LxFWjxYZrczlnnfLmmK7ao2vZ1pvrc5xu07arq6QUduTaZxuVWOp3AmrhQrdrnmu5tqfxYHyfOfns2peGK2qMXs3+7X809ekcvRlGWuabbwL6d1vJl83prL-755Gvn-XXCAA noborder}} +
-</WRAP>+
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 847: Zeile 639:
 This also allows the circuit to take the form shown in <imgref imageNo40> on the right. This circuit is again easy to calculate: This also allows the circuit to take the form shown in <imgref imageNo40> on the right. This circuit is again easy to calculate:
  
-\begin{align*} +\begin{align*} R_g = R || R + R || R || R || R + R || R || R || R + R || R = {{1}\over{2}}\cdot R + {{1}\over{4}}\cdot R + {{1}\over{4}}\cdot R + {{1}\over{2}}\cdot R = 1.5\cdot R \end{align*}
-R_g = R || R + R || R || R || R + R || R || R || R + R || R = {{1}\over{2}}\cdot R + {{1}\over{4}}\cdot R + {{1}\over{4}}\cdot R + {{1}\over{2}}\cdot R = 1.5\cdot R +
-  \end{align*} +
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 862: Zeile 651:
 <panel type="info" title="Exercise 2.7.2 Circuit Simplification Exercise II + III"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.7.2 Circuit Simplification Exercise II + III"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-{{youtube>QqUQF3ky7gk}} +{{youtube>QqUQF3ky7gk}}{{youtube>UmvFJbS21co}}
-{{youtube>UmvFJbS21co}}+
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 878: Zeile 666:
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
- 
  
 <panel type="info" title="Exercise 2.7.5 Circuit Simplification Exercise V"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.7.5 Circuit Simplification Exercise V"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
Zeile 885: Zeile 672:
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
- 
  
 <panel type="info" title="Exercise 2.7.6 Circuit Simplification VI Exercise"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.7.6 Circuit Simplification VI Exercise"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
Zeile 893: Zeile 679:
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-{{page>aufgabe_2.7.7_mit_rechnung&nofooter}} +{{page>aufgabe_2.7.7_mit_rechnung&nofooter}}{{page>aufgabe_2.7.8_mit_rechnung&nofooter}}{{page>aufgabe_2.7.9&nofooter}}{{page>aufgabe_2.7.10&nofooter}}
-{{page>aufgabe_2.7.8_mit_rechnung&nofooter}} +
-{{page>aufgabe_2.7.9&nofooter}} +
-{{page>aufgabe_2.7.10&nofooter}} +
  
 <panel type="info" title="Exercise 2.7.11 - Simplifying symmetric Circuits"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 2.7.11 - Simplifying symmetric Circuits"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
Zeile 909: Zeile 691:
 <panel type="info" title="other Exercises"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="other Exercises"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-More German exercises can be found online on the pages of [[https://www.eit.hs-karlsruhe.de/hertz/teil-b-gleichstromtechnik/zusammenschaltung-von-widerstaenden-und-idealen-quellen/uebungsaufgaben-zusammenschaltung-von-widerstaenden/berechnung-von-ersatzwiderstaenden.html|HErTZ]] (selection on the left in the menu). +More German exercises can be found online on the pages of [[https://www.eit.hs-karlsruhe.de/hertz/teil-b-gleichstromtechnik/zusammenschaltung-von-widerstaenden-und-idealen-quellen/uebungsaufgaben-zusammenschaltung-von-widerstaenden/berechnung-von-ersatzwiderstaenden.html|HErTZ]] (selection on the left in the menu). </WRAP></WRAP></panel> 
-</WRAP></WRAP></panel>+