Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

ee2:task_n1kwu944m7jac3tf_with_calculation [2024/07/15 23:18] (aktuell)
mexleadmin angelegt
Zeile 1: Zeile 1:
 +{{tag>self:magnetic_circuit exam_ee2_SS2024}}{{include_n>1080}}
 + 
 +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Magnetic Circuit \\
 +<fs medium>(written test, approx. 9 % of a 120-minute written test, SS2024)</fs> #@TaskText_HTML@#
  
 +A toroidal core (ferrite, $μ_{\rm r}=900$) has a cross-sectional area of $A=300 ~\rm mm^2$ and an average circumference of $l=3 ~\rm dm$. \\
 +{{drawio>ee2:n1kwu944m7jac3tf_question1.svg}}
 +
 +On the core, there are three coils with:
 +  * Coil 1: $N_1 = 1200$, $I_1=100 ~\rm mA$
 +  * Coil 2: $N_2 = 33  $, $I_2=  3 ~\rm A$
 +  * Coil 3: $N_3 = 270 $, $I_3=0.3 ~\rm A$
 +Refer to the drawing for the direction of the windings, current, and flux!
 +
 +1. Draw the equivalent magnetic circuit that fully represents the setup. \\ Name all the necessary magnetic resistances, fluxes, and voltages.
 +
 +#@HiddenBegin_HTML~n1kwu944m7jac3tf_12,Result~@#
 +  * Since the material, and diameter of the core is constant, one can directly simplify the magnetic resistor into a single $R_\rm m$.
 +  * For the orientation of the magnetic voltages $\theta_1$, $\theta_2$, and $\theta_3$, the orientation of the coils and the direction of the current has to be taken into account by the right-hand rule.
 +  * There is only one flux $\Phi$
 +  * The magnetic voltages are antiparallel to the flux for sources and parallel for the load.
 +
 +{{drawio>ee2:n1kwu944m7jac3tf_answer1.svg}}
 +#@HiddenEnd_HTML~n1kwu944m7jac3tf_12,Result~@#
 +
 +2. Calculate the magnetic resistance $R_\rm m$.
 +
 +#@HiddenBegin_HTML~n1kwu944m7jac3tf_21,Path~@#
 +The formula of the magnetic resistance is:
 +\begin{align*}
 +R_{\rm m} &= {{1}\over{\mu_0 \mu_{\rm r}}} {{l}\over{A}} \\
 +          &= {{1}\over{4\pi \cdot 10^{-7} {\rm {{Vs}\over{Am}}} \cdot 900}} {{3 \cdot 10^{-1} ~\rm m}\over{300 \cdot 10^{-6} ~\rm m^2}} \\
 +          &= 0.88419... ~ \cdot 10^{6}  \rm {{1}\over{H}} \\
 +\end{align*}
 +
 +#@HiddenEnd_HTML~n1kwu944m7jac3tf_21,Path~@#
 +
 +#@HiddenBegin_HTML~n1kwu944m7jac3tf_22,Result~@#
 +$R_{\rm m} = 0.884 \cdot 10^{6}  \rm {{1}\over{H}} $
 +#@HiddenEnd_HTML~n1kwu944m7jac3tf_22,Result~@#
 +
 +3. Calculate the resulting magnetic flux in the core.
 +
 +#@HiddenBegin_HTML~n1kwu944m7jac3tf_31,Path~@#
 +First we have to calculate the resulting magnetic voltage based on the sources:
 +\begin{align*}
 +- \theta_{\rm R} + \theta_1 + \theta_2 - \theta_3 &= 0 \\
 +\theta_{\rm R} &= \theta_1 + \theta_2 - \theta_3 \\
 +               &= I_1 \cdot N_1    + I_2 \cdot N_2 - I_3 \cdot N_3 \\
 +      \rm      &= 1200 \cdot 0.1~A + 33 \cdot 3~A  - 270 \cdot 0.3~A \\
 +               &= -60~A
 +\end{align*}
 +
 +To get the flux $\Phi$, the Hopkinson's Law can be applied - similar to the Ohm's Law:
 +\begin{align*}
 +\Phi &= {{\theta_{\rm R} }\over {R_{\rm m}}} \\
 +     &= {{-60~\rm A }\over { 0.884 \cdot 10^{6}  \rm {{1}\over{H}} }} \\
 +     &= 67.8 ... \cdot 10^{-6} { \rm A \cdot H} \\
 +     &= 67.8 ... ~\rm \mu Wb \\
 +     &= 67.8 ... ~\rm \mu Vs \\
 +\end{align*}
 +
 +#@HiddenEnd_HTML~n1kwu944m7jac3tf_31,Path~@#
 +
 +#@HiddenBegin_HTML~n1kwu944m7jac3tf_32,Result~@#
 +$\Phi = 67.8 ~\rm \mu Vs$
 +#@HiddenEnd_HTML~n1kwu944m7jac3tf_32,Result~@#
 +
 +
 +#@TaskEnd_HTML@#