no way to compare when less than two revisions
Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| — | ee2:task_nyniewamxfshpuwt_with_calculation [2024/07/04 03:52] (aktuell) – angelegt mexleadmin | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| + | {{tag> | ||
| + | |||
| + | # | ||
| + | <fs medium> | ||
| + | Given a resonant circuit, that is fed by a linear voltage source (circuit diagram on the right). \\ | ||
| + | The inductance $L$ and capacitance $C$ are fixed. The resistance $R$ can be varied. | ||
| + | * $u_{\rm s} = 12{~\rm V} \cdot \sin (2 \pi \cdot f_0 \cdot t) $ | ||
| + | * $R_i = 200~\rm m\Omega$ | ||
| + | * $L = 20~\rm mH$ | ||
| + | * $C = 30~\rm \mu F$ | ||
| + | |||
| + | {{drawio> | ||
| + | |||
| + | a) What is the resonance frequency $f_0$? | ||
| + | | ||
| + | # | ||
| + | The resonant frequency $f_0$ is given as | ||
| + | \begin{align*} | ||
| + | f_0 = {{1}\over{ 2\pi \sqrt{LC} }} | ||
| + | \end{align*} | ||
| + | |||
| + | With the values: | ||
| + | \begin{align*} | ||
| + | f_0 &= {{1}\over{ 2\pi \sqrt{20 \cdot 10^{-3} ~\rm H \cdot 30 \cdot 10^{-6} ~\rm F} }} \\ | ||
| + | &= 205.4681... \rm Hz | ||
| + | \end{align*} | ||
| + | |||
| + | # | ||
| + | |||
| + | # | ||
| + | $f_0 = 205.5 \rm Hz$ | ||
| + | # | ||
| + | |||
| + | b) How large must $R$ be, so that at resonance the voltage across the capacitor is $U_C = 4 \cdot U_{\rm s}$? (independent) | ||
| + | |||
| + | # | ||
| + | For the following calculation, | ||
| + | \begin{align*} | ||
| + | R_\Sigma = R_i + R \\ | ||
| + | \end{align*} | ||
| + | |||
| + | Here, either one knows that the gain factor $Q$ stands for $Q={{U_C}\over{U_{\rm s}}}$ and therefore can directly use the following formula: | ||
| + | \begin{align*} | ||
| + | Q = {{U_C}\over{U_{\rm s}}} &= {{1}\over{R_\Sigma}} | ||
| + | R_\Sigma | ||
| + | \end{align*} | ||
| + | |||
| + | < | ||
| + | When the gain factor is not known, one has to derive it: \\ | ||
| + | The voltage $I$ at resonance is only given by the total ohmic resistance $R_\Sigma$ and the source voltage $U_{\rm s}$: | ||
| + | \begin{align*} | ||
| + | I = {{U_{\rm s}}\over{R_\Sigma}} | ||
| + | \end{align*} | ||
| + | |||
| + | This current flow also through the impedance of the capacitor | ||
| + | \begin{align*} | ||
| + | U_C &= Z_C \cdot I \\ | ||
| + | &= {{1}\over{\omega C}} \cdot I \\ | ||
| + | &= {{U_{\rm s}}\over{\omega C R_\Sigma }} \\ | ||
| + | \end{align*} | ||
| + | |||
| + | At resonance, the angular frequency $\omega$ is given by $\omega= {{1}\over{\sqrt{LC}}}$. \\ | ||
| + | \begin{align*} | ||
| + | U_C &= {{U_{\rm s}}\over{{{1}\over{\sqrt{LC}}} C R_\Sigma }} \\ | ||
| + | &= {{U_{\rm s}}\over{\sqrt{{{C}\over{L}}} R_\Sigma }} \\ | ||
| + | &= {{U_{\rm s}}\over{R_\Sigma }} \sqrt{{{L}\over{C}}} | ||
| + | |||
| + | \end{align*} | ||
| + | </ | ||
| + | |||
| + | In both cases, we end up with the same formula, where we have to insert the physical values: | ||
| + | \begin{align*} | ||
| + | R_\Sigma | ||
| + | &= {{1}\over{4}} \sqrt{ {{20\cdot 10^{-3} ~\rm H}\over{30\cdot 10^{-6} ~\rm C}} } \\ | ||
| + | &= 6.4549...~\Omega \\ | ||
| + | \end{align*} | ||
| + | |||
| + | And so, the resistance $R$ is: | ||
| + | \begin{align*} | ||
| + | R &= R_\Sigma - R_i \\ | ||
| + | & | ||
| + | & | ||
| + | \end{align*} | ||
| + | |||
| + | # | ||
| + | |||
| + | # | ||
| + | $R = 6.255~\Omega$ | ||
| + | # | ||
| + | |||
| + | # | ||