Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

ee2:task_nyniewamxfshpuwt_with_calculation [2024/07/04 03:52] (aktuell)
mexleadmin angelegt
Zeile 1: Zeile 1:
 +{{tag>resonance resonant_circuit RMS exam_ee2_SS2021}}{{include_n>1270}}
 + 
 +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Resonant Circuit \\
 +<fs medium>(written test, approx. 4 % of a 120-minute written test, SS2021)</fs> #@TaskText_HTML@#
  
 +Given a resonant circuit, that is fed by a linear voltage source (circuit diagram on the right). \\
 +The inductance $L$ and capacitance $C$ are fixed. The resistance $R$ can be varied. 
 +  * $u_{\rm s} = 12{~\rm V} \cdot \sin (2 \pi \cdot f_0 \cdot t) $
 +  * $R_i = 200~\rm m\Omega$
 +  * $L = 20~\rm mH$
 +  * $C = 30~\rm \mu F$
 +
 +{{drawio>ee2:nYnieWAMxfShPuwt_question1.svg}}
 +
 +a) What is the resonance frequency $f_0$?
 +  
 +#@HiddenBegin_HTML~nYnieWAMxfShPuwt_11,Path~@#
 +The resonant frequency $f_0$ is given as 
 +\begin{align*}
 +f_0 = {{1}\over{ 2\pi \sqrt{LC} }}
 +\end{align*}
 +
 +With the values:
 +\begin{align*}
 +f_0 &= {{1}\over{ 2\pi \sqrt{20 \cdot 10^{-3} ~\rm H \cdot 30 \cdot 10^{-6} ~\rm F} }} \\
 +    &= 205.4681... \rm Hz
 +\end{align*}
 +
 +#@HiddenEnd_HTML~nYnieWAMxfShPuwt_11,Path~@#
 +
 +#@HiddenBegin_HTML~nYnieWAMxfShPuwt_12,Result~@#
 +$f_0 = 205.5 \rm Hz$
 +#@HiddenEnd_HTML~nYnieWAMxfShPuwt_12,Result~@#
 +
 +b) How large must $R$ be, so that at resonance the voltage across the capacitor is $U_C = 4 \cdot U_{\rm s}$?  (independent)
 +
 +#@HiddenBegin_HTML~nYnieWAMxfShPuwt_21,Path~@#
 +For the following calculation, the internal resistance $R_i$ and the resistance $R$ have to be combined:
 +\begin{align*}
 +R_\Sigma = R_i + R \\
 +\end{align*}
 +
 +Here, either one knows that the gain factor $Q$ stands for $Q={{U_C}\over{U_{\rm s}}}$ and therefore can directly use the following formula:
 +\begin{align*}
 +Q = {{U_C}\over{U_{\rm s}}} &= {{1}\over{R_\Sigma}}    \sqrt{ {{L}\over{C}} } \\
 +    R_\Sigma                &= {{U_{\rm s}}\over{U_C}} \sqrt{ {{L}\over{C}} } \\
 +\end{align*}
 +
 +<callout>
 +When the gain factor is not known, one has to derive it: \\
 +The voltage $I$ at resonance is only given by the total ohmic resistance $R_\Sigma$ and the source voltage $U_{\rm s}$:
 +\begin{align*}
 +I = {{U_{\rm s}}\over{R_\Sigma}}
 +\end{align*}
 +
 +This current flow also through the impedance of the capacitor
 +\begin{align*}
 +U_C &= Z_C \cdot I \\
 +    &= {{1}\over{\omega C}} \cdot I \\
 +    &= {{U_{\rm s}}\over{\omega C R_\Sigma }}  \\
 +\end{align*}
 +
 +At resonance, the angular frequency $\omega$ is given by $\omega= {{1}\over{\sqrt{LC}}}$. \\
 +\begin{align*}
 +U_C &= {{U_{\rm s}}\over{{{1}\over{\sqrt{LC}}} C R_\Sigma }}  \\
 +    &= {{U_{\rm s}}\over{\sqrt{{{C}\over{L}}} R_\Sigma }}  \\
 +    &= {{U_{\rm s}}\over{R_\Sigma }} \sqrt{{{L}\over{C}}}  \\
 +
 +\end{align*}
 +</callout>
 +
 +In both cases, we end up with the same formula, where we have to insert the physical values: 
 +\begin{align*}
 +R_\Sigma  &= {{U_{\rm s}}\over{U_C}} \sqrt{ {{L}\over{C}} } \\
 +          &= {{1}\over{4}} \sqrt{ {{20\cdot 10^{-3} ~\rm H}\over{30\cdot 10^{-6} ~\rm C}} } \\
 +          &= 6.4549...~\Omega \\
 +\end{align*}
 +
 +And so, the resistance $R$ is:
 +\begin{align*}
 +R  &= R_\Sigma - R_i \\
 +   &= 6.4549...~\Omega - 0.2~\Omega \\
 +   &= 6.2549...~\Omega
 +\end{align*}
 +
 +#@HiddenEnd_HTML~nYnieWAMxfShPuwt_21,Path~@#
 +
 +#@HiddenBegin_HTML~nYnieWAMxfShPuwt_22,Result~@#
 +$R = 6.255~\Omega$
 +#@HiddenEnd_HTML~nYnieWAMxfShPuwt_22,Result~@#
 +
 +#@TaskEnd_HTML@#