Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

ee2:task_y7dozgdsljqvnqge_with_calculation [2024/07/05 01:16] (aktuell)
mexleadmin angelegt
Zeile 1: Zeile 1:
 +{{tag>electrostatic capacitor plate_capacitor capacity exam_ee2_SS2022}}{{include_n>1030}}
 + 
 +#@TaskTitle_HTML@##@Lvl_HTML@#~~#@ee1_taskctr#~~ Capacitor \\
 +<fs medium>(written test, approx. 7 % of a 120-minute written test, SS2022)</fs> #@TaskText_HTML@#
  
 +Given is the multilayer capacitor shown below, with the following dimensions:
 +  * Length of layer overlap:  $l=1.5 ~\rm mm$ 
 +  * Distance between single layers: $d=1.0 ~\rm \mu m$ 
 +  * Depth of component: $w=0.7 ~\rm mm$
 +  * Number of layers (as shown in the picture): 3 left-side and 3 right-side layers.
 +
 +{{drawio>ee2:Y7DOzgDSLjqVnQge_question1.svg}}
 +
 +The material shall have a dielectric permittivity of $\varepsilon_r=3$. \\
 +The following calculations shall ignore boundary effects on the end of the layers. \\ \\
 +$\varepsilon_0 = 8.854 \cdot 10^{-12} ~\rm As/Vm$
 +
 +1. What is the field strength in the dielectric material between the layer, when a voltage of $U=6.3 ~\rm V$ is applied?
 +
 +#@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_11,Path~@#
 +The electric field strength $E$ is given by:
 +\begin{align*}
 +E &= {{U}\over{d}} \\
 +  &= {{6.3 ~\rm V}\over{1 \cdot 10^{-6} ~\rm m}} \\
 +\end{align*}
 +
 +#@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_11,Path~@#
 +
 +#@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_12,Result~@#
 +$E = 6.3 {{\rm MV}\over{\rm m}}$
 +#@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_12,Result~@#
 +
 +2. Calculate the capacity $C$.
 +
 +#@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_21,Path~@#
 +
 +The capacity can be derived from the geometry by:
 +\begin{align*}
 +C = \varepsilon_0 \varepsilon_r {{A}\over{d}} 
 +\end{align*}
 +
 +For the area $A$ we have multiple plates with the area $A_0= l \cdot w$ facing each other.
 +
 +{{drawio>ee2:Y7DOzgDSLjqVnQge_answer1.svg}}
 +
 +How many "multiple plates" $N$ do we have to consider? \\
 +For this, we have to count facing areas $A_0$. There are $N=5$.
 +
 +{{drawio>ee2:Y7DOzgDSLjqVnQge_answer2.svg}}
 +
 +Therefore, the formula is
 +\begin{align*}
 +C &= \varepsilon_0 \varepsilon_r {{N \cdot l \cdot w}\over{d}} \\
 +  &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 3  \cdot {{5 \cdot 1.5 \cdot 10^{-3} {~\rm m} \cdot 0.7 \cdot 10^{-3} {~\rm m} }\over{1 \cdot 10^{-6} {~\rm m} }}
 +\end{align*}
 +
 +
 +#@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_21,Path~@#
 +
 +#@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_22,Result~@#
 +$C = 0.139 ~\rm nF$ 
 +#@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_22,Result~@#
 +
 +3. Due to a production problem the left-side layers are covered with $d_{\rm c}=0.1 ~\rm \mu m$ of air ($\varepsilon_{r, \rm c}=1$), while the thickness of the dielectric material remains the same. \\
 +What is the new capacity $C_\rm c$?
 +
 +#@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_31,Path~@#
 +The air builds another capacitor in series to the dielectric material. 
 +Therefore, the capacity can be calculated as 
 +\begin{align*}
 +C_{\rm c} &= {{C \cdot C_{\rm Air}}\over{C + C_{\rm Air}}}
 +\end{align*}
 +
 +The capacity of air is 
 +\begin{align*}
 +C_{\rm Air} &= \varepsilon_0 \varepsilon_{r,\rm Air} {{N \cdot l \cdot w}\over{d_{\rm c}}} \\
 +            &= 8.854 \cdot 10^{-12} ~\rm As/Vm \cdot 1  \cdot {{5 \cdot 1.5 \cdot 10^{-3} {~\rm m} \cdot 0.7 \cdot 10^{-3} {~\rm m} }\over{0.1 \cdot 10^{-6} {~\rm m} }} \\
 +            &= 0.465... ~\rm nF
 +\end{align*}
 +
 +By this the overall capacity is 
 +\begin{align*}
 +C_{\rm c} &= {{0.139... ~\rm nF \cdot 0.465... ~\rm nF}\over{0.139... ~\rm nF + 0.465... ~\rm nF}}
 +\end{align*}
 +
 +#@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_31,Path~@#
 +
 +#@HiddenBegin_HTML~Y7DOzgDSLjqVnQge_32,Result~@#
 +$C_{\rm c} = 0.107~\rm nF$ 
 +#@HiddenEnd_HTML~Y7DOzgDSLjqVnQge_32,Result~@#
 +
 +
 +#@TaskEnd_HTML@#