Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_1:circuits_under_different_frequencies [2023/03/27 09:47] – mexleadmin | electrical_engineering_1:circuits_under_different_frequencies [2023/09/19 23:37] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| - | ====== 7. Networks at variable frequency ====== | + | ====== 7 Networks at variable frequency ====== |
| Further content can be found at this [[https:// | Further content can be found at this [[https:// | ||
| Zeile 82: | Zeile 82: | ||
| * the amplitude response: $A = \frac {\omega L}{\sqrt{R^2 + (\omega L)^2}}$ and | * the amplitude response: $A = \frac {\omega L}{\sqrt{R^2 + (\omega L)^2}}$ and | ||
| - | * the phase response: $\Delta\varphi_{u} = arctan \frac{R}{\omega L} = \frac{\pi}{2} - \arctan \frac{\omega L}{R}$ | + | * the phase response: $\Delta\varphi_{u} = \arctan \frac{R}{\omega L} = \frac{\pi}{2} - \arctan \frac{\omega L}{R}$ |
| The main focus should first be on the amplitude response. Its frequency response can be derived from the equation in various ways. | The main focus should first be on the amplitude response. Its frequency response can be derived from the equation in various ways. | ||
| Zeile 110: | Zeile 110: | ||
| This can also be derived from understanding the components: | This can also be derived from understanding the components: | ||
| * At small frequencies, | * At small frequencies, | ||
| - | * At higher frequencies, | + | * At higher frequencies, |
| - | * If the frequency becomes very high, only a negligible current flows through the coil - and hence through the resistor. The voltage drop at $R$ thus approaches zero and the output voltage $U_O$ tends towards $U_I$. | + | * If the frequency becomes very high, only a negligible current flows through the coil - and hence through the resistor. The voltage drop at $R$ thus approaches zero and the output voltage $U_\rm O$ tends towards $U_\rm I$. |
| The transfer function can also be decomposed into amplitude response and frequency response. \\ | The transfer function can also be decomposed into amplitude response and frequency response. \\ | ||
| Zeile 131: | Zeile 131: | ||
| <WRAP centeralign> | <WRAP centeralign> | ||
| - | $\large{\underline{A} = \frac {\underline{U}_{\rm O}^\phantom{O}}{\underline{U}_{\rm I}^\phantom{O}} | + | \begin{align*} |
| - | = \frac {\omega L} {\sqrt{R^2 + (\omega L)^2}}\cdot {\rm e}^{{\rm j}\left(\frac{\pi}{2} - \arctan \frac{\omega L}{R} \right)}}$ | + | \large{\underline{A} |
| - | $ \quad \quad \vphantom{\HUGE{I \\ I}} \large{\xrightarrow{\text{normalization}}} \vphantom{\HUGE{I \\ I}} \quad \quad \quad $ | + | = \frac {\omega L} {\sqrt{R^2 + (\omega L)^2}}\cdot {\rm e}^{{\rm j}\left(\frac{\pi}{2} - \arctan \frac{\omega L}{R} \right)}} |
| - | $\large{\underline{A}_{norm} | + | |
| - | = \frac {\omega L / R}{\sqrt{1 | + | \large{\underline{A}_{norm} |
| - | $\large{ | + | = \frac {\omega L / R}{\sqrt{1 |
| + | \large{ | ||
| + | \end{align*} | ||
| </ | </ | ||
| Zeile 166: | Zeile 168: | ||
| \begin{align*} | \begin{align*} | ||
| \vphantom{\HUGE{I }} \\ | \vphantom{\HUGE{I }} \\ | ||
| - | \underline{A}_{\rm norm} = \frac{x}{\sqrt{1 + x^2}} \cdot {\rm e}^{{\rm | + | \underline{A}_{\rm norm} = \frac{x}{\sqrt{1 + x^2}} \cdot {\rm e}^{{\rm |
| = \frac{U_{\rm O}}{U_{\rm I}} \cdot {\rm e}^{{\rm j}\varphi} | = \frac{U_{\rm O}}{U_{\rm I}} \cdot {\rm e}^{{\rm j}\varphi} | ||
| \end{align*} | \end{align*} | ||
| Zeile 196: | Zeile 198: | ||
| \begin{align*} | \begin{align*} | ||
| - | R &= \omega L \\ | + | R |
| - | \omega_{c} &= \frac{R}{L} \\ | + | \omega _{\rm c} &= \frac{R}{L} \\ |
| - | 2 \pi f_{c} &= \frac{R}{L} \quad \rightarrow \quad \boxed{f_{\rm c} = \frac{R}{2 \pi \cdot L}} \end{align*} | + | 2 \pi f_{\rm c} &= \frac{R}{L} \quad \rightarrow \quad \boxed{f_{\rm c} = \frac{R}{2 \pi \cdot L}} \end{align*} |
| ==== 7.2.2 RL Low Pass ==== | ==== 7.2.2 RL Low Pass ==== | ||
| Zeile 210: | Zeile 212: | ||
| \begin{align*} | \begin{align*} | ||
| - | \underline{A}_{\rm norm} = \frac {1}{\sqrt{1 + (\omega L / R)^2}}\cdot {\rm e}^{-{\rm j} \; arctan \frac{\omega L}{R} } | + | \underline{A}_{\rm norm} = \frac {1}{\sqrt{1 + (\omega L / R)^2}}\cdot {\rm e}^{-{\rm j} \; \arctan \frac{\omega L}{R} } |
| \end{align*} | \end{align*} | ||
| Zeile 234: | Zeile 236: | ||
| \begin{align*} | \begin{align*} | ||
| - | \underline{A}_{\rm norm} = \frac {\omega RC}{\sqrt{1 + (\omega RC)^2}}\cdot {\rm e}^{\frac{\pi}{2}-{\rm j} \; arctan (\omega RC) } | + | \underline{A}_{\rm norm} = \frac {\omega RC}{\sqrt{1 + (\omega RC)^2}}\cdot {\rm e}^{\frac{\pi}{2}-{\rm j} \; \arctan (\omega RC) } |
| \end{align*} | \end{align*} | ||