Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Nächste Überarbeitung Beide Seiten der Revision
electrical_engineering_1:dc_circuit_transients [2021/10/30 19:23]
tfischer
electrical_engineering_1:dc_circuit_transients [2021/10/31 20:51]
tfischer
Zeile 10: Zeile 10:
 <callout> <callout>
  
-<WRAP> <imgcaption imageNo01 | Capacitor in electrical circuit> </imgcaption> \\ {{drawio>KondensatorImStromkreis}} \\ </WRAP>+<WRAP>  
 +<imgcaption imageNo01 | Capacitor in electrical circuit>  
 +</imgcaption>  
 +\\ {{drawio>KondensatorImStromkreis}} \\  
 +</WRAP>
  
 Here we will shortly introduce the basic idea behind a capacitor. A more detailed analysis will follow in electical engineering II. \\  \\  Here we will shortly introduce the basic idea behind a capacitor. A more detailed analysis will follow in electical engineering II. \\  \\ 
Zeile 22: Zeile 26:
 As larger the voltage $U$, as more charges $Q$ are stored on the electrode. This relationship is directly proportional to the proportionality constant $C$: As larger the voltage $U$, as more charges $Q$ are stored on the electrode. This relationship is directly proportional to the proportionality constant $C$:
  
-\begin{align*} C = {{Q}\over{U}} \quad \text{with:} \quad [C]=1 {{As}\over{V}}= 1 F = 1\; Farad \end{align*}+\begin{align*}  
 +C = {{Q}\over{U}} \quad \text{with:} \quad [C]=1 {{As}\over{V}}= 1 F = 1\; Farad  
 +\end{align*}
  
 But it is not always directly recognizable that a structure contains a capacitor. \\ So the following examples are also capacitors: But it is not always directly recognizable that a structure contains a capacitor. \\ So the following examples are also capacitors:
Zeile 44: Zeile 50:
 <callout> <callout>
  
-In this chapter also time-varying quantities are considered. These are generally marked with small letters. Examples of time-varying quantities are:+In this chapter also time-varying quantities are considered. These are generally marked with lowercase letters. Examples of time-varying quantities are:
  
   * A **time-varying voltage $u_C(t)$ across a capacitor**  or the **voltage $u_s$ of an ac voltage source**  as opposed to a constant voltage $U_q$ across a constant voltage source.   * A **time-varying voltage $u_C(t)$ across a capacitor**  or the **voltage $u_s$ of an ac voltage source**  as opposed to a constant voltage $U_q$ across a constant voltage source.
   * A **time-varying current $i_L(t)$ across a coil** or **time-varying current $i_C(t)$ across a capacitor**.   * A **time-varying current $i_L(t)$ across a coil** or **time-varying current $i_C(t)$ across a capacitor**.
  
-Since the time dependence is already clear from the small letter, these quantities are occasionally not indicated by the trailing $(t)$. So it is $u = u(t)$.+Since the time dependence is already clear from the lowercase letter, these quantities are occasionally not indicated by the trailing $(t)$. So it is $u = u(t)$.
  
 </callout> </callout>
  
-===== 5.1 Time course of the charging and discharging process =====+===== 5.1 Time Course of the Charging and Discharging Process =====
  
 <callout> <callout>
Zeile 99: Zeile 105:
 The process is now to be summarized in detail in formulas. Linear components are used in the circuit, i.e. the component values for the resistor $R$ and the capacitance $C$ are independent of the current or the voltage. Then definition equations for the resistor $R$ and the capacitance $C$ are also valid for time-varying or infinitesimal quantities: The process is now to be summarized in detail in formulas. Linear components are used in the circuit, i.e. the component values for the resistor $R$ and the capacitance $C$ are independent of the current or the voltage. Then definition equations for the resistor $R$ and the capacitance $C$ are also valid for time-varying or infinitesimal quantities:
  
-\begin{align*} R = {{u_R(t)}\over{i_R(t)}} = {{du_R}\over{di_R}} = const. \\ +\begin{align*}  
-C = {{q(t)}\over{u_C(t)}} = {{dq}\over{du_C}} = const. \tag{5.1.1} \end{align*}+R = {{u_R(t)}\over{i_R(t)}} = {{du_R}\over{di_R}} = const. \\ 
 +C = {{q(t)}  \over{u_C(t)}} = {{dq}  \over{du_C}} = const. \tag{5.1.1}  
 +\end{align*}
  
 The following explanations are also well explained in these two videos on [[https://www.youtube.com/watch?v=csFh588BODY&ab_channel=MattAnderson|charging]] and [[https://www.youtube.com/watch?v=eCOLkUPSpxc&ab_channel=lasseviren1|discharging]]. The following explanations are also well explained in these two videos on [[https://www.youtube.com/watch?v=csFh588BODY&ab_channel=MattAnderson|charging]] and [[https://www.youtube.com/watch?v=eCOLkUPSpxc&ab_channel=lasseviren1|discharging]].
Zeile 109: Zeile 117:
 By considering the loop, the general result is: the voltage of the source is equal to the sum of the two voltages across the resistor and capacitor. By considering the loop, the general result is: the voltage of the source is equal to the sum of the two voltages across the resistor and capacitor.
  
-\begin{align*} U_q =u_R + u_C = R \cdot i_C + u_C \tag{5.1.2} \end{align*}+\begin{align*}  
 +U_q =u_R + u_C = R \cdot i_C + u_C \tag{5.1.2}  
 +\end{align*}
  
 At the first instant $dt$, an infinitesimally small charge "chunk" $dq$ flows through the circuit driven by the current $i_C$ from the voltage source. For this, $(5.1.1)$ gives: At the first instant $dt$, an infinitesimally small charge "chunk" $dq$ flows through the circuit driven by the current $i_C$ from the voltage source. For this, $(5.1.1)$ gives:
  
-\begin{align*} i_C = {{dq}\over{dt}} \quad \text{and} \quad dq = C \cdot du_C \end{align*}+\begin{align*}  
 +i_C = {{dq}\over{dt}} \quad \text{and} \quad dq = C \cdot du_C  
 +\end{align*}
  
 The charging current $i_C$ can be determined from the two formulas: The charging current $i_C$ can be determined from the two formulas:
  
-\begin{align*} i_C = C \cdot {{du_C}\over{dt}} \tag{5.1.3} \end{align*}+\begin{align*}  
 +i_C = C \cdot {{du_C}\over{dt}} \tag{5.1.3}  
 +\end{align*}
  
 Thus $(5.1.2)$ becomes: Thus $(5.1.2)$ becomes:
  
-\begin{align*} U_q &=u_R + u_C &= R \cdot C \cdot {{du_C}\over{dt}} + u_C \end{align*}+\begin{align*}  
 +U_q &= u_R                               + u_C \\ 
 +    &= R \cdot C \cdot {{du_C}\over{dt}} + u_C  
 +\end{align*}
  
 --> here follows some mathematics: # --> here follows some mathematics: #
Zeile 310: Zeile 327:
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
  
-===== 5.2 Energy of capacitor =====+===== 5.2 Energy stored in Capacitor =====
  
 <callout> <callout>