Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Letzte Überarbeitung Beide Seiten der Revision
electrical_engineering_1:dc_circuit_transients [2023/11/30 00:06]
mexleadmin [Bearbeiten - Panel]
electrical_engineering_1:dc_circuit_transients [2023/12/02 01:08]
mexleadmin [Exercises]
Zeile 474: Zeile 474:
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-#@TaskTitle_HTML@#5.2.2 Charge balance of two capacitors \\ <fs medium>(educational exercise, not part of an exam)</fs>#@TaskText_HTML@#+#@TaskTitle_HTML@# Exercise 5.2.2 Capacitor charging/discharging #@TaskText_HTML@# 
 + 
 +The following circuit shows a charging/discharging circuit for a capacitor. 
 + 
 +The values of the components shall be the following: 
 +  * $R_1 = 1 \rm k\Omega$ 
 +  * $R_2 = 2 \rm k\Omega$ 
 +  * $R_3 = 3 \rm k\Omega$ 
 +  * $C   = 1 \rm \mu F$ 
 +  * $S_1$ and $S_2$ are opened in the beginning (open-circuit) 
 + 
 +{{drawio>electrical_engineering_1:Exercise522setup.svg}} 
 + 
 +1. For the first tasks, the switch $S_1$ gets closed at $t=t_0 = 0s$. \\ 
 + 
 +1.1 What is the value of the time constant $\tau_1$? 
 + 
 +#@HiddenBegin_HTML~Solution1,Solution~@# 
 + 
 +The time constant $\tau$ is generally given as: $\tau= R\cdot C$. \\ 
 +Now, we try to determine which $R$ and $C$ must be used here. \\ 
 +To find this out, we have to look at the circuit when $S_1$ gets closed. 
 + 
 +{{drawio>electrical_engineering_1:Exercise522sol1.svg}} 
 + 
 +We see that for the time constant, we need to use $R=R_1 + R_2$. 
 + 
 +#@HiddenEnd_HTML~Solution1,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~Result1,Result~@# 
 +\begin{align*} 
 +\tau_1 &= R\cdot C \\ 
 +       &= (R_1 + R_2) \cdot C \\ 
 +       &= 3~\rm ms \\ 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~Result1,Result~@# 
 + 
 +1.2 What is the formula for the voltage $u_{R2}$ over the resistor $R_2$? Derive a general formula without using component values! 
 + 
 +#@HiddenBegin_HTML~Solution2,Solution~@# 
 + 
 +To get a general formula, we again take a look at the circuit, but this time with the voltage arrows. 
 + 
 +{{drawio>electrical_engineering_1:Exercise522sol2.svg}} 
 + 
 +We see, that: $U_1 = u_C + u_{R2}$ and there is only one current in the loop: $i = i_C = i_{R2}$\\ 
 +The current is generally given with the exponential function: $i_c = {{U}\over{R}}\cdot e^{-t/\tau}$, with $R$ given here as $R = R_1 + R_2$. 
 +Therefore, $u_{R2}$ can be written as: 
 + 
 +\begin{align*} 
 +u_{R2} &= R_2 \cdot i_{R2} \\ 
 +       &= U_1 \cdot {{R_2}\over{R_1 + R_2}} \cdot e^{-t/ \tau}  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~Solution2,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~Result2,Result~@# 
 +\begin{align*} 
 +u_{R2} = U_1 \cdot {{R_2}\over{R_1 + R_2}} \cdot e^{t/ \tau} 
 +\end{align*} 
 +#@HiddenEnd_HTML~Result2,Result~@# 
 + 
 +2. At a distinct time $t_1$, the voltage $u_C$ is charged up to $4/5 \cdot U_1$. 
 +At this point, the switch $S_1$ will be opened. \\ Calculate $t_1$! 
 + 
 +#@HiddenBegin_HTML~Solution3,Solution~@# 
 + 
 +We can derive $u_{C}$ based on the exponential function: $u_C(t) = U_1 \cdot (1-e^{-t/\tau})$. \\ 
 +Therefore, we get $t_1$ by: 
 + 
 +\begin{align*} 
 +u_C = 4/5 \cdot U_1              & U_1 \cdot (1-e^{-t/\tau}) \\ 
 +      4/5                        &            1-e^{-t/\tau} \\ 
 +      e^{-t/\tau}                &            1-4/5 = 1/5\\ 
 +         -t/\tau                 &            \rm ln (1/5) \\ 
 +          t                      &= -\tau \cdot \rm ln (1/5) \\ 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~Solution3,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~Result3,Result~@# 
 +\begin{align*} 
 +          t                      & 3~{\rm ms} \cdot 1.61 = 4.8~\rm ms \\ 
 +\end{align*} 
 +#@HiddenEnd_HTML~Result3,Result~@# 
 + 
 +3. The switch $S_2$ will get closed at the moment $t_2 = 10 ~\rm ms$. The values of the voltage sources are now: $U_1 = 5 ~\rm V$ and $U_2 = 10 ~\rm V$. 
 + 
 +3.1 What is the new time constant $\tau_2$? 
 + 
 +#@HiddenBegin_HTML~Solution4,Solution~@# 
 + 
 +Again the time constant $\tau$ is given as: $\tau= R\cdot C$. \\ 
 +Again, we try to determine which $R$ and $C$ must be used here. \\ 
 +To find this out, we have to look at the circuit when $S_1$ is open and $S_2$ is closed. 
 + 
 +{{drawio>electrical_engineering_1:Exercise522sol4.svg}} 
 + 
 +We see that for the time constant, we now need to use $R=R_3 + R_2$. 
 + 
 +\begin{align*} 
 +\tau_2 &= R\cdot C \\ 
 +       &= (R_3 + R_2) \cdot C \\ 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~Solution4,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~Result4,Result~@# 
 +\begin{align*} 
 +\tau_2 &= 5~\rm ms \\ 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~Result4,Result~@# 
 +3.2 Calculate the moment $t_3$ when $u_{R2}$ is smaller than $1/10 \cdot U_2$. 
 + 
 +3.3 Draw the course of time of the voltage $u_C(t)$ over the capacitor. 
 +#@TaskEnd_HTML@# 
 + 
 +{{page>aufgabe_7.2.6_mit_rechnung&nofooter}} 
 + 
 +#@TaskTitle_HTML@#5.2.4 Charge balance of two capacitors \\ <fs medium>(educational exercise, not part of an exam)</fs>#@TaskText_HTML@#
  
  
Zeile 511: Zeile 632:
  
  
-{{page>aufgabe_7.2.6_mit_rechnung&nofooter}}