Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Letzte Überarbeitung Beide Seiten der Revision
electrical_engineering_1:dc_circuit_transients [2023/12/02 00:38]
mexleadmin [Exercises]
electrical_engineering_1:dc_circuit_transients [2023/12/02 01:08]
mexleadmin [Exercises]
Zeile 483: Zeile 483:
   * $R_3 = 3 \rm k\Omega$   * $R_3 = 3 \rm k\Omega$
   * $C   = 1 \rm \mu F$   * $C   = 1 \rm \mu F$
-  * $S_1$ and $S_2$ are opened (open-circuit)+  * $S_1$ and $S_2$ are opened in the beginning (open-circuit)
  
 {{drawio>electrical_engineering_1:Exercise522setup.svg}} {{drawio>electrical_engineering_1:Exercise522setup.svg}}
Zeile 538: Zeile 538:
  
 2. At a distinct time $t_1$, the voltage $u_C$ is charged up to $4/5 \cdot U_1$. 2. At a distinct time $t_1$, the voltage $u_C$ is charged up to $4/5 \cdot U_1$.
-At this point, the switch $S_2$ will be closed. \\ Calculate $t_1$!+At this point, the switch $S_1$ will be opened. \\ Calculate $t_1$!
  
 #@HiddenBegin_HTML~Solution3,Solution~@# #@HiddenBegin_HTML~Solution3,Solution~@#
  
 We can derive $u_{C}$ based on the exponential function: $u_C(t) = U_1 \cdot (1-e^{-t/\tau})$. \\ We can derive $u_{C}$ based on the exponential function: $u_C(t) = U_1 \cdot (1-e^{-t/\tau})$. \\
-Therefore we get $t_1$ by:+Thereforewe get $t_1$ by:
  
 \begin{align*} \begin{align*}
Zeile 562: Zeile 562:
  
 3. The switch $S_2$ will get closed at the moment $t_2 = 10 ~\rm ms$. The values of the voltage sources are now: $U_1 = 5 ~\rm V$ and $U_2 = 10 ~\rm V$. 3. The switch $S_2$ will get closed at the moment $t_2 = 10 ~\rm ms$. The values of the voltage sources are now: $U_1 = 5 ~\rm V$ and $U_2 = 10 ~\rm V$.
 +
 +3.1 What is the new time constant $\tau_2$?
  
 #@HiddenBegin_HTML~Solution4,Solution~@# #@HiddenBegin_HTML~Solution4,Solution~@#
Zeile 567: Zeile 569:
 Again the time constant $\tau$ is given as: $\tau= R\cdot C$. \\ Again the time constant $\tau$ is given as: $\tau= R\cdot C$. \\
 Again, we try to determine which $R$ and $C$ must be used here. \\ Again, we try to determine which $R$ and $C$ must be used here. \\
-To find this out, we have to look at the circuit when both $S_1$ and $S_2$ are closed.+To find this out, we have to look at the circuit when $S_1$ is open and $S_2$ is closed.
  
 {{drawio>electrical_engineering_1:Exercise522sol4.svg}} {{drawio>electrical_engineering_1:Exercise522sol4.svg}}
  
-We see that for the time constant, we need to use $R=R_1 + R_2$.+We see that for the time constant, we now need to use $R=R_3 + R_2$. 
 + 
 +\begin{align*} 
 +\tau_2 &= R\cdot C \\ 
 +       &= (R_3 + R_2) \cdot C \\ 
 +\end{align*}
  
 #@HiddenEnd_HTML~Solution4,Solution ~@# #@HiddenEnd_HTML~Solution4,Solution ~@#
Zeile 577: Zeile 584:
 #@HiddenBegin_HTML~Result4,Result~@# #@HiddenBegin_HTML~Result4,Result~@#
 \begin{align*} \begin{align*}
-\tau_1 &R\cdot C \\ +\tau_2 &5~\rm ms \\
-       &= (R_1 + R_2) \cdot C \\ +
-       &= 3~\rm ms \\+
 \end{align*} \end{align*}
  
 #@HiddenEnd_HTML~Result4,Result~@# #@HiddenEnd_HTML~Result4,Result~@#
- 
-3.1 What is the new time constant $\tau_2$? 
- 
 3.2 Calculate the moment $t_3$ when $u_{R2}$ is smaller than $1/10 \cdot U_2$. 3.2 Calculate the moment $t_3$ when $u_{R2}$ is smaller than $1/10 \cdot U_2$.