Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung Beide Seiten der Revision
electrical_engineering_1:dc_circuit_transients [2021/10/30 20:12]
tfischer
electrical_engineering_1:dc_circuit_transients [2021/10/31 20:51]
tfischer
Zeile 26: Zeile 26:
 As larger the voltage $U$, as more charges $Q$ are stored on the electrode. This relationship is directly proportional to the proportionality constant $C$: As larger the voltage $U$, as more charges $Q$ are stored on the electrode. This relationship is directly proportional to the proportionality constant $C$:
  
-\begin{align*} C = {{Q}\over{U}} \quad \text{with:} \quad [C]=1 {{As}\over{V}}= 1 F = 1\; Farad \end{align*}+\begin{align*}  
 +C = {{Q}\over{U}} \quad \text{with:} \quad [C]=1 {{As}\over{V}}= 1 F = 1\; Farad  
 +\end{align*}
  
 But it is not always directly recognizable that a structure contains a capacitor. \\ So the following examples are also capacitors: But it is not always directly recognizable that a structure contains a capacitor. \\ So the following examples are also capacitors:
Zeile 103: Zeile 105:
 The process is now to be summarized in detail in formulas. Linear components are used in the circuit, i.e. the component values for the resistor $R$ and the capacitance $C$ are independent of the current or the voltage. Then definition equations for the resistor $R$ and the capacitance $C$ are also valid for time-varying or infinitesimal quantities: The process is now to be summarized in detail in formulas. Linear components are used in the circuit, i.e. the component values for the resistor $R$ and the capacitance $C$ are independent of the current or the voltage. Then definition equations for the resistor $R$ and the capacitance $C$ are also valid for time-varying or infinitesimal quantities:
  
-\begin{align*} R = {{u_R(t)}\over{i_R(t)}} = {{du_R}\over{di_R}} = const. \\ +\begin{align*}  
-C = {{q(t)}\over{u_C(t)}} = {{dq}\over{du_C}} = const. \tag{5.1.1} \end{align*}+R = {{u_R(t)}\over{i_R(t)}} = {{du_R}\over{di_R}} = const. \\ 
 +C = {{q(t)}  \over{u_C(t)}} = {{dq}  \over{du_C}} = const. \tag{5.1.1}  
 +\end{align*}
  
 The following explanations are also well explained in these two videos on [[https://www.youtube.com/watch?v=csFh588BODY&ab_channel=MattAnderson|charging]] and [[https://www.youtube.com/watch?v=eCOLkUPSpxc&ab_channel=lasseviren1|discharging]]. The following explanations are also well explained in these two videos on [[https://www.youtube.com/watch?v=csFh588BODY&ab_channel=MattAnderson|charging]] and [[https://www.youtube.com/watch?v=eCOLkUPSpxc&ab_channel=lasseviren1|discharging]].
Zeile 113: Zeile 117:
 By considering the loop, the general result is: the voltage of the source is equal to the sum of the two voltages across the resistor and capacitor. By considering the loop, the general result is: the voltage of the source is equal to the sum of the two voltages across the resistor and capacitor.
  
-\begin{align*} U_q =u_R + u_C = R \cdot i_C + u_C \tag{5.1.2} \end{align*}+\begin{align*}  
 +U_q =u_R + u_C = R \cdot i_C + u_C \tag{5.1.2}  
 +\end{align*}
  
 At the first instant $dt$, an infinitesimally small charge "chunk" $dq$ flows through the circuit driven by the current $i_C$ from the voltage source. For this, $(5.1.1)$ gives: At the first instant $dt$, an infinitesimally small charge "chunk" $dq$ flows through the circuit driven by the current $i_C$ from the voltage source. For this, $(5.1.1)$ gives:
  
-\begin{align*} i_C = {{dq}\over{dt}} \quad \text{and} \quad dq = C \cdot du_C \end{align*}+\begin{align*}  
 +i_C = {{dq}\over{dt}} \quad \text{and} \quad dq = C \cdot du_C  
 +\end{align*}
  
 The charging current $i_C$ can be determined from the two formulas: The charging current $i_C$ can be determined from the two formulas:
  
-\begin{align*} i_C = C \cdot {{du_C}\over{dt}} \tag{5.1.3} \end{align*}+\begin{align*}  
 +i_C = C \cdot {{du_C}\over{dt}} \tag{5.1.3}  
 +\end{align*}
  
 Thus $(5.1.2)$ becomes: Thus $(5.1.2)$ becomes:
  
-\begin{align*} U_q &=u_R + u_C &= R \cdot C \cdot {{du_C}\over{dt}} + u_C \end{align*}+\begin{align*}  
 +U_q &= u_R                               + u_C \\ 
 +    &= R \cdot C \cdot {{du_C}\over{dt}} + u_C  
 +\end{align*}
  
 --> here follows some mathematics: # --> here follows some mathematics: #