Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Letzte Überarbeitung Beide Seiten der Revision
electrical_engineering_1:introduction_in_alternating_current_technology [2023/03/27 09:21]
mexleadmin
electrical_engineering_1:introduction_in_alternating_current_technology [2023/12/20 09:53]
mexleadmin
Zeile 1: Zeile 1:
-====== 6Introduction to Alternating Current Technology ======+====== 6 Introduction to Alternating Current Technology ======
  
 Up to now, we had analyzed DC signals (chapters 1. -  4.) and abrupt voltage changes for (dis)charging capacitors (chapter 5.). In households, we use alternating voltage (AC) instead of a constant voltage (DC). This is due to at least three main facts Up to now, we had analyzed DC signals (chapters 1. -  4.) and abrupt voltage changes for (dis)charging capacitors (chapter 5.). In households, we use alternating voltage (AC) instead of a constant voltage (DC). This is due to at least three main facts
Zeile 152: Zeile 152:
 Since $sin(\omega t)\geq0$ for $t\in [0,\pi]$, the integral can be changed and the absolute value bars can be excluded like the following  \\ Since $sin(\omega t)\geq0$ for $t\in [0,\pi]$, the integral can be changed and the absolute value bars can be excluded like the following  \\
 \begin{align*} \begin{align*}
-\overline{|X|}    &= {{1}\over{T}}\cdot 2 \cdot \int_{t=0}^{T/2} \hat{X}\cdot \sin( {{2\pi}\over{T}} t ) {\rm d}t \\ +\overline{|X|}    &= {{1}\over{T}}\cdot 2 \cdot \int_{t=0}^{T/2}        \hat{X}\cdot   \sin( {{2\pi}\over{T}} t ) {\rm d}t \\ 
-               &= 2 \cdot {{1}\over{T}}\cdot [-\hat{X}\cdot {{T}\over{2\pi}}\cdot \cos( {{2\pi}\over{T}} t )]_{t=0}^{T/2} \\ +                  &= 2 \cdot {{1}\over{T}}\cdot [-\hat{X}\cdot {{T}\over{2\pi}}\cdot   \cos( {{2\pi}\over{T}} t )]_{t=0}^{T/2} \\ 
-               &= 2 \cdot {{1}\over{T}}\cdot {{T}\over{2\pi}}\cdot \hat{X}\cdot [-\cos( {{2\pi}\over{T}} t )]_{t=0}^{T/2} \\ +                  &= 2 \cdot {{1}\over{T}}\cdot {{T}\over{2\pi}}\cdot   \hat{X}\cdot [-\cos( {{2\pi}\over{T}} t )]_{t=0}^{T/2} \\ 
-               &= {{1}\over{\pi}}\cdot \hat{X} \cdot [1+1] \\ +                  &= {{1}\over{\pi}}\cdot \hat{X} \cdot [1+1] \\ 
-\boxed{\overline{|X|} = {{2}\over{\pi}}\cdot \hat{X} \approx 0.6366 \cdot \hat{X}}\\+\boxed{\overline{|X|}  
 +                   = {{2}\over{\pi}}\cdot \hat{X} \approx 0.6366 \cdot \hat{X}}\\
 \end{align*} \end{align*}
 </callout> </callout>
Zeile 175: Zeile 176:
    
 \begin{align*} \begin{align*}
-             P_{\rm DC} &= P_{\rm AC} \\ +             P_{\rm DC}   &= P_{\rm AC} \\ 
-U_{DC} \cdot I_{\rm DC} &= {{1}\over{T}} \int_{0}^{T} u(t) \cdot i(t) {\rm d}t \\ +U_{DC} \cdot I_{\rm DC}   &= {{1}\over{T}} \int_{0}^{T} u(t) \cdot i(t)   {\rm d}t \\ 
-   R \cdot I_{\rm DC}^2 &= {{1}\over{T}} \int_{0}^{T} R \cdot i^2(t) {\rm d}t \\ +     R \cdot I_{\rm DC}^2 &= {{1}\over{T}} \int_{0}^{T} R    \cdot i^2(t) {\rm d}t \\ 
-           I_{\rm DC}^2 &= {{1}\over{T}} \int_{0}^{T} i^2(t) {\rm d}t \\ +             I_{\rm DC}^2 &= {{1}\over{T}} \int_{0}^{T}            i^2(t) {\rm d}t \\ 
-\rightarrow I_{\rm DC} &= \sqrt{{{1}\over{T}} \int_{0}^{T} i^2(t) {\rm d}t}  +\rightarrow  I_{\rm DC}   &= \sqrt{{{1}\over{T}} \int_{0}^{T}      i^2(t) {\rm d}t}  
 \end{align*} \end{align*}
  
Zeile 204: Zeile 205:
 \begin{align*} \begin{align*}
 X & \sqrt{{{1}\over{T}}\cdot \int_{t=t_0}^{t_0 + T} x^2(t)  {\rm d}t} \\ X & \sqrt{{{1}\over{T}}\cdot \int_{t=t_0}^{t_0 + T} x^2(t)  {\rm d}t} \\
-  & \sqrt{{{1}\over{T}}\cdot \int_{t=0}  ^{T}      \hat{X}^2\cdot \sin^2(\omega t)  {\rm d}t} \\ +  & \sqrt{{{1}\over{T}}\cdot \int_{t=0}  ^{T}      \hat{X}^2\cdot                        \sin^2(     \omega t)  {\rm d}t} \\ 
-  & \sqrt{{{1}\over{T}}\cdot \int_{t=0}  ^{T}      \hat{X}^2\cdot {{1}\over{2}}\cdot (1- \cos(2\cdot \omega t))  {\rm d}t} \\+  & \sqrt{{{1}\over{T}}\cdot \int_{t=0}  ^{T}      \hat{X}^2\cdot {{1}\over{2}}\cdot (1- \cos(2\cdot \omega t)) {\rm d}t} \\
   & \sqrt{{{1}\over{T}}\cdot \hat{X}^2\cdot {{1}\over{2}}\cdot [t + {{1}\over{2\omega }}\cdot \sin(2\cdot \omega t)]_{0}^{T}} \\   & \sqrt{{{1}\over{T}}\cdot \hat{X}^2\cdot {{1}\over{2}}\cdot [t + {{1}\over{2\omega }}\cdot \sin(2\cdot \omega t)]_{0}^{T}} \\
   & \sqrt{{{1}\over{T}}\cdot \hat{X}^2\cdot {{1}\over{2}}\cdot (T - 0  + 0 - 0)} \\   & \sqrt{{{1}\over{T}}\cdot \hat{X}^2\cdot {{1}\over{2}}\cdot (T - 0  + 0 - 0)} \\
Zeile 295: Zeile 296:
 Now, we insert the functions representing the instantaneous signals and calculate the derivative: Now, we insert the functions representing the instantaneous signals and calculate the derivative:
 \begin{align*} \begin{align*}
- \sqrt{2}{I}\cdot \sin(\omega t + \varphi_i) &= {{\rm d}\over{{\rm d}t}}\left( C \cdot \sqrt{2}{U}\cdot \sin(\omega t + \varphi_u)  \right) \\ + \sqrt{2}{I}\cdot \sin(\omega t + \varphi_i) &= {{\rm d}\over{{\rm d}t}}\left( C \cdot \sqrt{2}{U}\cdot              \sin(\omega t + \varphi_u)  \right) \\ 
-                                             & C \cdot \sqrt{2}{U}\cdot \omega \cdot \cos(\omega t + \varphi_u) \\ \\ +                                             &                               C \cdot \sqrt{2}{U}\cdot \omega \cdot \cos(\omega t + \varphi_u) \\ \\ 
-        {I}\cdot \sin(\omega t + \varphi_i)  & C \cdot {U}\cdot \omega \cdot \sin(\omega t + \varphi_u + {{1}\over{2}}\pi)  \tag{6.3.1}+        {I}\cdot \sin(\omega t + \varphi_i)  & C \cdot {U}\cdot \omega \cdot                                       \sin(\omega t + \varphi_u + {{1}\over{2}}\pi)  \tag{6.3.1}
 \end{align*} \end{align*}
  
Zeile 309: Zeile 310:
 \omega t + \varphi_i &= \omega t + \varphi_u + {{1}\over{2}}\pi \\ \omega t + \varphi_i &= \omega t + \varphi_u + {{1}\over{2}}\pi \\
            \varphi_i &           \varphi_u + {{1}\over{2}}\pi \\            \varphi_i &           \varphi_u + {{1}\over{2}}\pi \\
-\varphi_u -\varphi_i &           - {{1}\over{2}}\pi +\varphi_u -\varphi_i &                     - {{1}\over{2}}\pi 
 \end{align*} \end{align*}
  
Zeile 353: Zeile 354:
 \begin{align*} \begin{align*}
  \sqrt{2}{U}\cdot \sin(\omega t + \varphi_u) &= L \cdot {{\rm d}\over{{\rm d}t}}\left( \sqrt{2}{I}\cdot \sin(\omega t + \varphi_i)  \right) \\  \sqrt{2}{U}\cdot \sin(\omega t + \varphi_u) &= L \cdot {{\rm d}\over{{\rm d}t}}\left( \sqrt{2}{I}\cdot \sin(\omega t + \varphi_i)  \right) \\
-                                             &= L \cdot \sqrt{2}{I}\cdot \omega \cdot \cos(\omega t + \varphi_i) \\ \\ +                                             &= L \cdot                   \sqrt{2}{I}\cdot \omega \cdot \cos(\omega t + \varphi_i) \\ \\ 
-         {U}\cdot \sin(\omega t + \varphi_u) &= L \cdot {I}\cdot \omega \cdot \sin(\omega t + \varphi_i + {{1}\over{2}}\pi)  \tag{6.3.2}+         {U}\cdot \sin(\omega t + \varphi_u) &= L \cdot                           {I}\cdot \omega \cdot \sin(\omega t + \varphi_i + {{1}\over{2}}\pi)  \tag{6.3.2}
 \end{align*} \end{align*}
  
Zeile 366: Zeile 367:
 \omega t + \varphi_u &= \omega t + \varphi_i + {{1}\over{2}}\pi \\ \omega t + \varphi_u &= \omega t + \varphi_i + {{1}\over{2}}\pi \\
            \varphi_u &           \varphi_i + {{1}\over{2}}\pi \\            \varphi_u &           \varphi_i + {{1}\over{2}}\pi \\
-\boxed{\varphi = \varphi_u -\varphi_i =            + {{1}\over{2}}\pi }+\boxed{\varphi = \varphi_u -\varphi_i =      + {{1}\over{2}}\pi }
 \end{align*} \end{align*}
  
Zeile 495: Zeile 496:
 \underline{u}(t) &=\sqrt{2}                          U \cdot {\rm e}^{{\rm j} (\omega t + \varphi_u)} \\ \underline{u}(t) &=\sqrt{2}                          U \cdot {\rm e}^{{\rm j} (\omega t + \varphi_u)} \\
                  &=\sqrt{2}\color{blue}             {U \cdot {\rm e}^{{\rm j} \varphi_u}}                   &=\sqrt{2}\color{blue}             {U \cdot {\rm e}^{{\rm j} \varphi_u}} 
-                                                       \cdot {\rm e}^{{\rm j}  \omega t } \\+                                                       \cdot {\rm e}^{{\rm j} \omega t} \\
                  &=\sqrt{2}\color{blue}{\underline{U}} \cdot {\rm e}^{{\rm j} \omega t} \\                  &=\sqrt{2}\color{blue}{\underline{U}} \cdot {\rm e}^{{\rm j} \omega t} \\
 \end{align*} \end{align*}
Zeile 541: Zeile 542:
   * $X = Z \sin \varphi$   * $X = Z \sin \varphi$
  
-==== 6.5.2 Application on pure Loads ====+value - and therefore a phasor - can simply ==== 6.5.2 Application on pure Loads ====
  
 With the complex impedance in mind, the <tabref tab01> can be expanded to:  With the complex impedance in mind, the <tabref tab01> can be expanded to: 
Zeile 555: Zeile 556:
 \\ \\ \\ \\
 The relationship between ${\rm j}$ and integral calculus should be clear:  The relationship between ${\rm j}$ and integral calculus should be clear: 
-  - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as "$\cdot {\rm j}$",  which also means a phase shift of $+90°$: \\ ${{\rm d}\over{{\rm d}t}} {\rm e}^{{\rm j}(\omega t + \varphi_x)} = {\rm j} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)}$ +  - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as "$\cdot {\rm j}$", \\ which also means a phase shift of $+90°$: \\ \begin{align*}{{\rm d}\over{{\rm d}t}} {\rm e}^{{\rm j}(\omega t + \varphi_x)} = {\rm j} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)}\end{align*} 
-  - The integral of a sinusoidal value - and therefore a phasor - can simply be written as "$\cdot (-{\rm j})$", which also means a phase shift of $-90°$.((in general, here the integration constant must be considered. This is however often be neglectable since only AC values (without a DC value) are considered.)) \\ $\int {\rm e}^{{\rm j}(\omega t + \varphi_x)} = {{1}\over{\rm j}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} = - {\rm j} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)}$+  - The integral of a sinusoidal value - and therefore a phasor - can simply be written as "$\cdot (-{\rm j})$", \\ which also means a phase shift of $-90°$.((in general, here the integration constant must be considered. This is however often neglectable since only AC values (without a DC value) are considered.)) <WRAP>  
 +\begin{align*} 
 +                     \int {\rm e}^{{\rm j}(\omega t + \varphi_x)}  
 +  = {{1}\over{\rm j}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)}  
 +          - {\rm j} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} 
 +\end{align*} 
 +</WRAP>
  
 Once a fixed input voltage is given, the voltage phasor $\underline{U}$, the current phasor $\underline{I}$, and the impedance phasor $\underline{Z}$. In <imgref pic10> these phasors are shown. Once a fixed input voltage is given, the voltage phasor $\underline{U}$, the current phasor $\underline{I}$, and the impedance phasor $\underline{Z}$. In <imgref pic10> these phasors are shown.
Zeile 810: Zeile 817:
  
 in the following, some of the numbers are given.  in the following, some of the numbers are given. 
-Calculate the RMS value of the missing voltage and the phase shift $\varphi$ between $U$ and $I$.+Calculate the RMS value of the missing currents and the phase shift $\varphi$ between $U$ and $I$.
   - $I_R = 3~\rm A$, $I_L = 1  ~\rm A$, $I_C = 5  ~\rm A$, $I=?$   - $I_R = 3~\rm A$, $I_L = 1  ~\rm A$, $I_C = 5  ~\rm A$, $I=?$
   - $I_R = ?$,       $I_L = 1.2~\rm A$, $I_C = 0.4~\rm A$, $I=1~\rm A$   - $I_R = ?$,       $I_L = 1.2~\rm A$, $I_C = 0.4~\rm A$, $I=1~\rm A$
Zeile 817: Zeile 824:
  
 <panel type="info" title="Exercise 6.5.5 Complex Calculation I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 6.5.5 Complex Calculation I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
-The following two currents with similar frequencies, but different phases have to be added. Use complex calulation!+The following two currents with similar frequencies, but different phases have to be added. Use complex calculation!
   * $i_1(t) = \sqrt{2} \cdot 2 ~A \cdot \cos (\omega t + 20°)$   * $i_1(t) = \sqrt{2} \cdot 2 ~A \cdot \cos (\omega t + 20°)$
   * $i_2(t) = \sqrt{2} \cdot 5 ~A \cdot \cos (\omega t + 110°)$   * $i_2(t) = \sqrt{2} \cdot 5 ~A \cdot \cos (\omega t + 110°)$
Zeile 825: Zeile 832:
 <panel type="info" title="Exercise 6.5.6 Complex Calculation II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 6.5.6 Complex Calculation II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
 Two complex impedances $\underline{Z}_1$ and $\underline{Z}_2$ are investigated.  Two complex impedances $\underline{Z}_1$ and $\underline{Z}_2$ are investigated. 
-The resulting impedance for a series circuit is $60~\Omega$.  +The resulting impedance for a series circuit is   $60~\Omega + \rm j \cdot 0 ~\Omega $.  
-The resulting impedance for a parallel circuit is $25~\Omega$.+The resulting impedance for a parallel circuit is $25~\Omega + \rm j \cdot 0 ~\Omega $.
  
 What are the values for $\underline{Z}_1$ and $\underline{Z}_2$? What are the values for $\underline{Z}_1$ and $\underline{Z}_2$?
 +
 +#@HiddenBegin_HTML~656Sol,Solution~@#
 +It's a good start to write down all definitions of the given values:
 +  * the given values for the series circuit ($\square_\rm s$) and the parallel circuit ($\square_\rm p$) are: \begin{align*} R_\rm s = 60 ~\Omega , \quad X_\rm s = 0 ~\Omega \\ R_\rm p = 25 ~\Omega , \quad X_\rm p = 0 ~\Omega \\ \end{align*}
 +  * the series circuit and the parallel circuit results into: \begin{align*}  R_{\rm s} = \underline{Z}_1 + \underline{Z}_2 \tag{1} \\ R_{\rm p} = \underline{Z}_1 || \underline{Z}_2  \tag{2} \\ \end{align*}
 +  * the unknown values of the two impedances are: \begin{align*} \underline{Z}_1 = R_1 + {\rm j}\cdot X_1  \tag{3} \\ \underline{Z}_2 = R_2 + {\rm j}\cdot X_2 \tag{4} \\ \end{align*}
 +
 +Based on $(1)$,$(3)$ and $(4)$: 
 +\begin{align*}
 +R_\rm s         &= \underline{Z}_1     &&+ \underline{Z}_2  \\
 +                &= R_1 + {\rm j}\cdot X_1    &&+ R_2 + {\rm j}\cdot X_2  \\ 
 +\rightarrow 0   &= R_1 + R_2 - R_\rm s &&+ {\rm j}\cdot (X_1 + X_2)  \\ 
 +\end{align*}
 +Real value and imaginary value must be zero:
 +\begin{align*}
 +R_1 &= R_{\rm s} - R_2  \tag{5} \\
 +X_1 &= - X_2  \tag{6}
 +\end{align*}
 +
 +Based on $(2)$ with $R_\rm s = \underline{Z}_1 + \underline{Z}_2$  $(1)$: 
 +\begin{align*}
 +R_{\rm p}                  &= {{\underline{Z}_1 \cdot \underline{Z}_2}\over{\underline{Z}_1 + \underline{Z}_2}} \\
 +                           &= {{\underline{Z}_1 \cdot \underline{Z}_2}\over{R_\rm s}} \\ \\
 +R_{\rm p} \cdot R_{\rm s}  &  \underline{Z}_1 \cdot \underline{Z}_2 \\
 +                           &= (R_1 + {\rm j}\cdot X_1)\cdot (R_2 + {\rm j}\cdot X_2)     \\
 +                           &= R_1 R_2 + {\rm j}\cdot (R_1 X_2 + R_2 X_1) - X_1 X_2     \\
 +\end{align*}
 +
 +Substituting $R_1$ and $X_1$ based on $(5)$ and $(6)$:
 +\begin{align*}
 +R_{\rm p} \cdot R_{\rm s}  & (R_{\rm s} - R_2 )  R_2 + {\rm j}\cdot ((R_{\rm s} - R_2 )  X_2 - R_2 X_2) + X_2 X_2     \\
 +\rightarrow 0 & R_{\rm s} R_2 - R_2^2  + X_2^2 - R_{\rm p} \cdot R_{\rm s}  + {\rm j}\cdot ((R_{\rm s} - R_2 )  X_2 - R_2 X_2)      \\
 +\end{align*}
 +
 +Again real value and imaginary value must be zero:
 +\begin{align*}
 +0 & j\cdot ((R_{\rm s} - R_2 )  X_2 - R_2 X_2)     \\
 +  &          R_{\rm s}X_2 - 2 \cdot R_2 X_2        \\
 +\rightarrow    R_2 = {{1}\over{2}} R_{\rm s} \tag{7} \\ \\
 +
 +0 &= R_{\rm s} R_2 - R_2^2  + X_2^2 - R_{\rm p} \cdot R_{\rm s}  \\
 +  &= R_{\rm s} ({{1}\over{2}} R_{\rm s}) - ({{1}\over{2}} R_{\rm s})^2  - X_2^2 - R_{\rm p} \cdot R_{\rm s}  \\
 +  &= {{1}\over{4}} R_{\rm s}^2 + X_2^2 - R_{\rm p} \cdot R_{\rm s}  \\
 +\rightarrow    X_2 = \pm \sqrt{R_{\rm p} \cdot R_{\rm s}  - {{1}\over{4}} R_{\rm s}^2 } \tag{8} \\ \\
 +
 +\end{align*}
 +
 +The concluding result is:
 +\begin{align*}
 +(5)+(7): \quad R_1 &= {{1}\over{2}} R_{\rm s} \\
 +(7): \quad R_2 &= {{1}\over{2}} R_{\rm s} \\
 +(6)+(8)  \quad X_1 &= \mp \sqrt{R_{\rm p} \cdot R_{\rm s}  - {{1}\over{4}} R_{\rm s}^2 } \\
 +(8): \quad X_2 &= \pm \sqrt{R_{\rm p} \cdot R_{\rm s}  - {{1}\over{4}} R_{\rm s}^2 }
 +\end{align*}
 +
 +#@HiddenEnd_HTML~656Sol,Solution ~@#
 +
 +#@HiddenBegin_HTML~656Res,Result~@#
 +\begin{align*}
 +R_1 &= 30~\Omega \\
 +R_2 &= 30~\Omega \\
 +X_1 &= \mp \sqrt{600}~\Omega \approx \mp 24.5~\Omega \\
 +X_2 &= \pm \sqrt{600}~\Omega \approx \pm 24.5~\Omega \\
 +\end{align*}
 +#@HiddenEnd_HTML~656Res,Result~@#
 +
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>