Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Nächste Überarbeitung Beide Seiten der Revision
electrical_engineering_1:introduction_in_alternating_current_technology [2023/03/27 09:30]
mexleadmin
electrical_engineering_1:introduction_in_alternating_current_technology [2023/09/19 23:37]
mexleadmin
Zeile 1: Zeile 1:
-====== 6Introduction to Alternating Current Technology ======+====== 6 Introduction to Alternating Current Technology ======
  
 Up to now, we had analyzed DC signals (chapters 1. -  4.) and abrupt voltage changes for (dis)charging capacitors (chapter 5.). In households, we use alternating voltage (AC) instead of a constant voltage (DC). This is due to at least three main facts Up to now, we had analyzed DC signals (chapters 1. -  4.) and abrupt voltage changes for (dis)charging capacitors (chapter 5.). In households, we use alternating voltage (AC) instead of a constant voltage (DC). This is due to at least three main facts
Zeile 542: Zeile 542:
   * $X = Z \sin \varphi$   * $X = Z \sin \varphi$
  
-==== 6.5.2 Application on pure Loads ====+value - and therefore a phasor - can simply ==== 6.5.2 Application on pure Loads ====
  
 With the complex impedance in mind, the <tabref tab01> can be expanded to:  With the complex impedance in mind, the <tabref tab01> can be expanded to: 
Zeile 556: Zeile 556:
 \\ \\ \\ \\
 The relationship between ${\rm j}$ and integral calculus should be clear:  The relationship between ${\rm j}$ and integral calculus should be clear: 
-  - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as "$\cdot {\rm j}$",  which also means a phase shift of $+90°$: \\ ${{\rm d}\over{{\rm d}t}} {\rm e}^{{\rm j}(\omega t + \varphi_x)} = {\rm j} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)}$ +  - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as "$\cdot {\rm j}$", \\ which also means a phase shift of $+90°$: \\ \begin{align*}{{\rm d}\over{{\rm d}t}} {\rm e}^{{\rm j}(\omega t + \varphi_x)} = {\rm j} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)}\end{align*} 
-  - The integral of a sinusoidal value - and therefore a phasor - can simply be written as "$\cdot (-{\rm j})$", which also means a phase shift of $-90°$.((in general, here the integration constant must be considered. This is however often be neglectable since only AC values (without a DC value) are considered.)) <WRAP>  +  - The integral of a sinusoidal value - and therefore a phasor - can simply be written as "$\cdot (-{\rm j})$", \\ which also means a phase shift of $-90°$.((in general, here the integration constant must be considered. This is however often neglectable since only AC values (without a DC value) are considered.)) <WRAP>  
-$                      \int {\rm e}^{{\rm j}(\omega t + \varphi_x)} +\begin{align*} 
 +                     \int {\rm e}^{{\rm j}(\omega t + \varphi_x)} 
   = {{1}\over{\rm j}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)}    = {{1}\over{\rm j}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} 
-  =         - {\rm j} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)}$+  =         - {\rm j} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} 
 +\end{align*}
 </WRAP> </WRAP>