Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_1:introduction_in_alternating_current_technology [2021/12/12 13:31]
tfischer
electrical_engineering_1:introduction_in_alternating_current_technology [2023/12/20 09:55] (aktuell)
mexleadmin
Zeile 1: Zeile 1:
-====== 6Introduction into Alternating Current Technology ======+====== 6 Introduction to Alternating Current Technology ======
  
-Up to now we had analysed DC signals (chapters 1. -  4.) and abrupt voltage changes for (dis)charging capacitors (chapter 5.). In households we use instead of a constant voltage (DC) alternating voltage (AC). This is due to at least three main facts +Up to nowwe had analyzed DC signals (chapters 1. -  4.) and abrupt voltage changes for (dis)charging capacitors (chapter 5.). In householdswe use alternating voltage (AC) instead of a constant voltage (DC). This is due to at least three main facts 
-  - Often the voltage given by the **power plant is AC**. This is true for example in all power plants which use electric generators. In these, an mechanic energy of a rotating system is transformed into electric energy by means of moving magnets, which induce an alternating electic voltage. Some modern plants, like photovoltaic plants do not primary generate AC voltages. +  - Often the voltage given by the **power plant is AC**. This is true for example in all power plants which use electric generators. In these, the mechanical energy of a rotating system is transformed into electric energy using moving magnets, which induce an alternating electric voltage. Some modern plants, like photovoltaic plantsdo not primarily generate AC voltages. 
-  - For long-range power transfer the power losses $P_{loss}$ can be reduced by reducing the currents $I$ since $P_{loss}=R\cdot I^2$. Therefore, for constant power transfer the voltage have to be increased. This is much easier done with AC voltages: **AC enables to transform lower voltages to higher** by the use of alternating magnetic fields in a transformer. +  - For long-range power transfer the power losses $P_{\rm loss}$ can be reduced by reducing the currents $I$ since $P_{\rm loss}=R\cdot I^2$. Therefore, for constant power transferthe voltage has to be increased. This is much easier done with AC voltages: **AC enables the transformation of a lower voltage to higher** by the use of alternating magnetic fields in a transformer. 
   - AC signals have **at least one more value** which can be used for understanding the situation of the source or load. This simplifies the power and load management in a complex power network.   - AC signals have **at least one more value** which can be used for understanding the situation of the source or load. This simplifies the power and load management in a complex power network.
  
 This does not mean that DC power lines are useless or only full of disadvantages:  This does not mean that DC power lines are useless or only full of disadvantages: 
-  * A lot of modern loads need DC voltages, like battery based systems (laptops, electric cars, smartphones). Others can simpliy be changed into DC loads like systems with electric motors (refridgeratorsoven, lighting, heating). +  * A lot of modern loads need DC voltages, like battery-based systems (laptops, electric cars, smartphones). Others can simply be changed into DC loads like systems with electric motors (refrigeratorsovens, lighting, heating). 
   * Long-range power transfer with DC voltages show often much lower power losses.   * Long-range power transfer with DC voltages show often much lower power losses.
  
-Besides the applications in power systems AC values are also important in communication engineering. Acoustic and visual signals like sound and images can often be considered as wavelike AC signals. Additionally, also for signal transfer like Bluetooth, RFID, antenna design AC signals are important.+Besides the applications in power systems AC values are also important in communication engineering. Acoustic and visual signals like sound and images can often be considered as wavelike AC signals. Additionally, also for signal transfer like Bluetooth, RFID, and antenna design AC signals are important.
  
-In order to understand these systems a bit more, we will start in this chapter with a first introduction into AC systems. +To understand these systems a bit more, we will start this chapter with a first introduction to AC systems. 
  
-===== 6.1 Description of ime-dependent Signals =====+<callout> 
 +If you have trouble understanding the complex numbers please refer to the following videos: 
 +  * The question "What's the point of complex numbers?" is addressed [[https://www.youtube.com/watch?v=SP-YJe7Vldo|here]] and [[https://www.youtube.com/watch?v=T647CGsuOVU|here]] 
 +  * How to calculate with complex numbers (sum, difference, product) can be seen in [[https://www.youtube.com/watch?v=OzU_1EwaF9Y|this video]] 
 +  * The geometric interpretation of the complex multiplication or: "Why is the amount and angle to be added in the multiplication?" is shown [[https://www.youtube.com/watch?v=H63NbbphzCw|here]], and [[https://www.youtube.com/watch?v=HrvEkftPZpw|here]] 
 +</callout> 
 + 
 + 
 +===== 6.1 Description of time-dependent Signals =====
  
 <callout> <callout>
-==== Goals ====+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
   - know which types of time-dependent waveforms there are and be able to assign them   - know which types of time-dependent waveforms there are and be able to assign them
   - Know the relationship between amplitude and peak-to-peak value.   - Know the relationship between amplitude and peak-to-peak value.
-  - Know the relationship between period, frequency and angular frequency.+  - Know the relationship between period, frequencyand angular frequency.
   - Know the difference between zero phase angle and phase shift angle.   - Know the difference between zero phase angle and phase shift angle.
   - Know the direction of the phase shift angle.   - Know the direction of the phase shift angle.
Zeile 35: Zeile 43:
 As already used in chapter [[dc_circuit_transients|5.]] for the time-dependent values lowercase letters will be written. As already used in chapter [[dc_circuit_transients|5.]] for the time-dependent values lowercase letters will be written.
  
-By this time-dependent values any temporal form of the voltage / current curves are possible (see <imgref pic01>). \\ +By these time-dependent valuesany temporal form of the voltage/current curves is possible (see <imgref pic01>). \\ 
-  * We distinguish periodic and non periodic signals +  * We distinguish periodic and non-periodic signals 
-  * One important family of periodic signals are sinusoidal signals+  * One important family of periodic signals is sinusoidal signals
   * Sinusoidal signals can be mixed with DC signals   * Sinusoidal signals can be mixed with DC signals
  
Zeile 43: Zeile 51:
 <imgcaption pic01 | Classification of time-dependent values>  <imgcaption pic01 | Classification of time-dependent values> 
 </imgcaption>  </imgcaption> 
-\\ {{drawio>Classtimedependentvalues}} \\ +\\  {{drawio>Classtimedependentvalues.svg}} \\ 
 </WRAP> </WRAP>
  
-In the following we will investigate mainly pure AC signals.+In the followingwe will investigate mainly pure AC signals.
  
 ==== 6.1.2 Descriptive Values of AC Signals ==== ==== 6.1.2 Descriptive Values of AC Signals ====
Zeile 53: Zeile 61:
 <imgcaption pic02 | Values of AC signals>  <imgcaption pic02 | Values of AC signals> 
 </imgcaption>  </imgcaption> 
-\\ {{drawio>Descrsinusoidalsignals}} \\ +\\ {{drawio>Descrsinusoidalsignals.svg}} \\ 
 </WRAP> </WRAP>
  
-There are some important characteristic values when investigating AC signals (<imgref pic02>). For the singal itself these are: +There are some important characteristic values when investigating AC signals (<imgref pic02>). For the signal itselfthese are: 
-  * The **DC voltage** or DC offset is given by the value $U_{DC}$ of $V_{DC}$ (in German: Gleichanteil). The DC component also defines the average value of an AC signal. +  * The **DC voltage** or DC offset is given by the value $U_{\rm DC}$ of $V_{\rm DC}$ (in German: Gleichanteil). The DC component also defines the average value of an AC signal. 
-  * The maximum deviation from the DC value is called **peak voltage** $U_p$ (in German : Spitzespannung). Specifically for sinusidal signals the **peak voltage** $U_p$ is also called **amplitude** $\hat{U}$  (in German: Scheitelwert or Amplitude). +  * The maximum deviation from the DC value is called **peak voltage** $U_\rm p$ (in German : //Spitzespannung//). Specifically for sinusoidal signals the **peak voltage** $U_\rm p$ is also called **amplitude** $\hat{U}$  (in German: //Scheitelwert// or //Amplitude//). 
-  * The voltage difference between maximum and minimum deviation is called **peak-to-peak voltage** $U_{pp}$ (in German: Spitze-Spitze-Spannung). \\ Be aware, that in English texts often amplitude is also used for (non sinusidal) $U_{pp}$ - based on German DIN standards the term amplitude is only valid for the sinusidal peak voltage.+  * The voltage difference between maximum and minimum deviation is called **peak-to-peak voltage** $U_{\rm pp}$ (in German: //Spitze-Spitze-Spannung//). \\ Be aware, that in English texts the term amplitude is also often used for (non-sinusoidal) $U_{\rm pp}$. Based on German DIN standards the term amplitude is only valid for the sinusoidal peak voltage.
  
-Additionally, there are also characteristic values related to the time:+Additionally, there are also characteristic values related to time:
   * The shortest time difference for the signal to repeat is called **period** $T$.   * The shortest time difference for the signal to repeat is called **period** $T$.
-  * Based on the period $T$ the frequency $f = {{1}\over{T}}$ can be derived. The unit of the frequency is $1 Hz = 1 Hertz$. +  * Based on the period $T$ the frequency $f = {{1}\over{T}}$ can be derived. The unit of the frequency is $1 ~{\rm Hz= 1 ~\rm Hertz$. 
-  * For calculation, often the **angular frequency** $\omega$ is used. The angular frequency is given by $\omega = {{2\pi}\over{T}}$ with the unit ${{1}\over{s}}$. \\ The angular frequency represents the angle which is covered in one second.  +  * For calculation, often the **angular frequency** $\omega$ is used. The angular frequency is given by $\omega = {{2\pi}\over{T}}$ with the unit ${{1}\over{s}}$. \\ The angular frequency represents the angle that is covered in one second.  
-  * Another handy value is the time offset between the start of the sinus wave ($u(t)=0V$ and rising) and $t=0s$. This difference is often written based on an angular difference and is called the **phase  angle** or **initial phase** $\varphi_U$ (in German: Nullphasenwinkel). This then has to be calculated back to a time value: $\Delta t= {{\varphi_U}\over{\omega}}= \varphi_U\cdot{{T}\over{2\pi}}$+  * Another handy value is the time offset between the start of the sinus wave ($u(t)=0~\rm V$ and rising) and $t=0 ~\rm s$. This difference is often written based on an angular difference and is called the **phase angle** or **initial phase** $\varphi_U$ (in German: //Nullphasenwinkel//). This then has to be calculated back to a time value: $\Delta t= {{\varphi_U}\over{\omega}}= \varphi_U\cdot{{T}\over{2\pi}}$
  
 Mathematically, the AC voltages and currents can be written as: Mathematically, the AC voltages and currents can be written as:
-$$u(t)=\hat{U}\cdot sin(\omega t + \varphi_U)$$ +$$u(t)=\hat{U}\cdot \sin(\omega t + \varphi_U)$$ 
-$$i(t)=\hat{I}\cdot sin(\omega t + \varphi_I)$$ \\+$$i(t)=\hat{I}\cdot \sin(\omega t + \varphi_I)$$ \\
  
-Between the AC voltages and currents there is also another important characteristic: The **phase difference** $\Delta \varphi$ is given by $\Delta \varphi = \varphi_U \varphi_I$. The phase difference shows how far the momentary value of the current is ahead of the momentary value of the voltage.+Between the AC voltages and currentsthere is also another important characteristic: The **phase difference** $\Delta \varphi$ is given by $\Delta \varphi = \varphi_U \varphi_I$. The phase difference shows how far the momentary value of the current is ahead of the momentary value of the voltage.
  
 <callout icon="fa fa-exclamation" color="red" title="Notice:"> <callout icon="fa fa-exclamation" color="red" title="Notice:">
 <WRAP> <WRAP>
-The initial phase $\varphi_0$ has an direction / sign which have to be considered. In the case **a)** in the picture the zero-crossing of the sinusidal signal is before $t=0$ or $\omega t =0$. Therefore, the initial phase $\varphi_0$ is positive.+The initial phase $\varphi_0$ has direction/sign which has to be considered. In the case **a)** in the picture the zero-crossing of the sinusoidal signal is before $t=0$ or $\omega t =0$. Therefore, the initial phase $\varphi_0$ is positive.
  
-{{drawio>initialphase}}+{{drawio>initialphase.svg}}
  
-Similarly also for the phase difference $\Delta \varphi$ the direction has to be taken into account. In the following image the zero-crossing of the voltage curve is before the zero-crossing of the current. This leads to a positive phase difference $\Delta \varphi$.+Similarly also for the phase difference $\Delta \varphi$ the direction has to be taken into account. In the following imagethe zero-crossing of the voltage curve is before the zero-crossing of the current. This leads to a positive phase difference $\Delta \varphi$.
  
-{{drawio>phasedifference}}+{{drawio>phasedifference.svg}}
  
 </WRAP> </WRAP>
Zeile 89: Zeile 97:
  
 <callout> <callout>
-==== Goals ====+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
-  - be able to calculate the arithmetic mean, the rectified value and the rms value.+  - calculate the arithmetic mean, the rectified valueand the RMS value.
   - know these mean values for sinusoidal quantities.   - know these mean values for sinusoidal quantities.
-  - know the reason for using the rms value.+  - know the reason for using the RMS value.
 </callout> </callout>
  
-In order to analyse AC signals more, often different types of averages are taken into account. The most important values are:+To analyze AC signals more, often different types of averages are taken into account. The most important values are:
   - the arithmetic mean $\overline{X}$   - the arithmetic mean $\overline{X}$
-  - the recified value $\overline{|X|}$ +  - the rectified value $\overline{|X|}$ 
-  - the rms value $X$+  - the RMS value $X$
  
 These shall be discussed in the following. The video "Alternating Current AC Basics - Part 1" of EEVblog explains the ideas behind these values alternatively to the following subchapter: These shall be discussed in the following. The video "Alternating Current AC Basics - Part 1" of EEVblog explains the ideas behind these values alternatively to the following subchapter:
Zeile 115: Zeile 123:
 $$\overline{X}={{1}\over{n}}\cdot \sum_{i=1}^n x_i$$ $$\overline{X}={{1}\over{n}}\cdot \sum_{i=1}^n x_i$$
  
-For functions it is given by: +For functionsit is given by: 
-$$\boxed{\overline{X}={{1}\over{T}}\cdot \int_{t=t_0}^{t_0 + T} x(t) dt}$$+$$\boxed{\overline{X}={{1}\over{T}}\cdot \int_{t=t_0}^{t_0 + T} x(t) {\rm d}t}$$
  
-For pure AC signals, the arithmetic mean $\overline{X}=0$, since the unsigned value of the integral between upper half-wave and $0$ is equal to the unsigned value of the integral between lower half-wave and $0$. +For pure AC signals, the arithmetic mean is $\overline{X}=0$, since the unsigned value of the integral between the upper half-wave and $0$ is equal to the unsigned value of the integral between the lower half-wave and $0$. 
  
 ==== 6.2.2 The Rectified Value ==== ==== 6.2.2 The Rectified Value ====
  
-Since the arithmetic mean of pure AC signals with $\overline{X}=0$ does not really give an insight into the signal, different other (weighted) average can be used. \\ +Since the arithmetic mean of pure AC signals with $\overline{X}=0$ does not really give an insight into the signal, different other (weighted) averages can be used. \\ 
-One of them is the rectified value. For this the signal is first recified (visually: negaive values are folded up onto the x-axis) and then averaged. \\ +One of them is the rectified value. For thisthe signal is first rectified (visually: negative values are folded up onto the x-axis) and then averaged. \\ 
-For finite values the rectified value is given by:+For finite valuesthe rectified value is given by:
 $$\overline{|X|}={{1}\over{n}}\cdot \sum_{i=1}^n |x_i|$$ $$\overline{|X|}={{1}\over{n}}\cdot \sum_{i=1}^n |x_i|$$
  
-For functions it is given by: +For functionsit is given by: 
-$$\boxed{\overline{|X|}={{1}\over{T}}\cdot \int_{t=t_0}^{t_0 + T} |x(t)| dt}$$+$$\boxed{\overline{|X|}={{1}\over{T}}\cdot \int_{t=t_0}^{t_0 + T} |x(t)| {\rm d}t}$$
  
 <callout> <callout>
Zeile 134: Zeile 142:
  
 \begin{align*} \begin{align*}
-\overline{|X|} &= {{1}\over{T}}\cdot \int_{t=t_0}^{t_0 + T} |\hat{X}\cdot sin(\omega t + \varphi)           dt \\+\overline{|X|} &= {{1}\over{T}}\cdot \int_{t=t_0}^{t_0 + T} |\hat{X}\cdot \sin(\omega t + \varphi)           {\rm d}t \\
 \end{align*} \end{align*}
  
 Without limiting the generality, we use $\varphi=0$ and $t_0 = 0$  Without limiting the generality, we use $\varphi=0$ and $t_0 = 0$ 
 \begin{align*} \begin{align*}
-\overline{|X|} &= {{1}\over{T}}\cdot \int_{t=0  }^{T      } |\hat{X}\cdot sin(\omega t          )           dt \\+\overline{|X|} &= {{1}\over{T}}\cdot \int_{t=0  }^{T      } |\hat{X}\cdot \sin(\omega t          )           {\rm d}t \\
 \end{align*} \end{align*}
  
-Since $sin(\omega t)\geq0$ for $t\in [0,\pi]$, the integral can changed and the absolute value bars can be excluded like the following  \\+Since $sin(\omega t)\geq0$ for $t\in [0,\pi]$, the integral can be changed and the absolute value bars can be excluded like the following  \\
 \begin{align*} \begin{align*}
-\overline{|X|}    &= {{1}\over{T}}\cdot 2 \cdot \int_{t=0}^{T/2} \hat{X}\cdot sin( {{2\pi}\over{T}} t ) dt \\ +\overline{|X|}    &= {{1}\over{T}}\cdot 2 \cdot \int_{t=0}^{T/2}        \hat{X}\cdot   \sin( {{2\pi}\over{T}} t ) {\rm d}t \\ 
-               &= 2 \cdot {{1}\over{T}}\cdot [-\hat{X}\cdot {{T}\over{2\pi}}\cdot cos( {{2\pi}\over{T}} t )]_{t=0}^{T/2} \\ +                  &= 2 \cdot {{1}\over{T}}\cdot [-\hat{X}\cdot {{T}\over{2\pi}}\cdot   \cos( {{2\pi}\over{T}} t )]_{t=0}^{T/2} \\ 
-               &= 2 \cdot {{1}\over{T}}\cdot {{T}\over{2\pi}}\cdot \hat{X}\cdot [-cos( {{2\pi}\over{T}} t )]_{t=0}^{T/2} \\ +                  &= 2 \cdot {{1}\over{T}}\cdot {{T}\over{2\pi}}\cdot   \hat{X}\cdot [-\cos( {{2\pi}\over{T}} t )]_{t=0}^{T/2} \\ 
-               &= {{1}\over{\pi}}\cdot \hat{X} \cdot [1+1] \\ +                  &= {{1}\over{\pi}}\cdot \hat{X} \cdot [1+1] \\ 
-\boxed{\overline{|X|} = {{2}\over{\pi}}\cdot \hat{X} \approx 0.6366\cdot \hat{X}}\\+\boxed{\overline{|X|}  
 +                   = {{2}\over{\pi}}\cdot \hat{X} \approx 0.6366 \cdot \hat{X}}\\
 \end{align*} \end{align*}
 </callout> </callout>
  
-<panel type="info" title="Exercise 6.3.1 The Rectified Value of rectangular and triangular signals"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Exercise 6.2.1 The Rectified Value of rectangular and triangular signals"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Calculate the rectified value of rectangular and triangular signals! Use similar symmetry simplificatinos like shown for AC signals. Compare it to the values shown in <imgref imageNo5>.+Calculate the rectified value of rectangular and triangular signals! Use similar symmetry simplifications as shown for AC signals. Compare it to the values shown in <imgref imageNo5>.
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 160: Zeile 169:
 ==== 6.2.3 The RMS Value ==== ==== 6.2.3 The RMS Value ====
  
-Often it is important be able to compare AC signals to DC signals by having equivalent values. But what does equivalent mean? \\ +Often it is important to be able to compare AC signals to DC signals by having equivalent values. But what does equivalent mean? \\ 
-Most importantly, these "equivalent values" are used to compare the output power of a system. One of this equivalent value is supply voltage value of $230V$ (or in some countries $110V$). \\ +Most importantly, these "equivalent values" are used to compare the output power of a system. One of these equivalent values is the supply voltage value of $230~V$ (or in some countries $110V$). \\ 
-How do we come to this values?+How do we come to these values?
  
 We want to find the voltage $U_{DC}$ and $I_{DC}$ of a DC source, that the output power $P_{DC}$ on a resistor $R$ is similar to the output power $P_{AC}$ of an AC source with the instantaneous values $u(t)$ and $i(t)$. For this, we have to consider the instantaneous power $p(t)$ for a distinct time $t$ and integrate this over one period $T$. We want to find the voltage $U_{DC}$ and $I_{DC}$ of a DC source, that the output power $P_{DC}$ on a resistor $R$ is similar to the output power $P_{AC}$ of an AC source with the instantaneous values $u(t)$ and $i(t)$. For this, we have to consider the instantaneous power $p(t)$ for a distinct time $t$ and integrate this over one period $T$.
    
 \begin{align*} \begin{align*}
-             P_{DC} &= P_{AC} \\ +             P_{\rm DC}   &= P_{\rm AC} \\ 
-U_{DC} \cdot I_{DC} &= {{1}\over{T}} \int_{0}^{T} u(t) \cdot i(t) dt \\ +U_{DC} \cdot I_{\rm DC}   &= {{1}\over{T}} \int_{0}^{T} u(t) \cdot i(t)   {\rm d}t \\ 
-   R \cdot I_{DC}^2 &= {{1}\over{T}} \int_{0}^{T} R \cdot i^2(t) dt \\ +     R \cdot I_{\rm DC}^2 &= {{1}\over{T}} \int_{0}^{T} R    \cdot i^2(t) {\rm d}t \\ 
-           I_{DC}^2 &= {{1}\over{T}} \int_{0}^{T} i^2(t) dt \\ +             I_{\rm DC}^2 &= {{1}\over{T}} \int_{0}^{T}            i^2(t) {\rm d}t \\ 
-\rightarrow I_{DC} &= \sqrt{{{1}\over{T}} \int_{0}^{T} i^2(t) dt}  +\rightarrow  I_{\rm DC}   &= \sqrt{{{1}\over{T}} \int_{0}^{T}      i^2(t) {\rm d}t}  
 \end{align*} \end{align*}
  
-The similar approach can be used on instantaneous voltage $u(t)$. Generally, the RMS values is given by +similar approach can be used on instantaneous voltage $u(t)$. Generally, the RMS value of $X$ is given by 
 \begin{align*} \begin{align*}
-\boxed{X_{RMS} = \sqrt{{{1}\over{T}} \int_{0}^{T} x^2(t) dt}}+\boxed{X_{\rm RMS} = \sqrt{{{1}\over{T}} \int_{0}^{T} x^2(t) {\rm d}t}}
 \end{align*} \end{align*}
 What is the meaning of RMS? Simple: What is the meaning of RMS? Simple:
-{{drawio>rms}}+{{drawio>rms.svg}}
  
-By this abbreviation, one can also not forget in which order the fromula cas to be written... Often the rms value is also called effective value (in German: Effektivwert).+By this abbreviation, one can also not forget in which order the formula has to be written... Often the RMS value is also called effective value (in German: Effektivwert).
  
 <callout icon="fa fa-exclamation" color="red" title="Note:">  <callout icon="fa fa-exclamation" color="red" title="Note:"> 
-  * The heat dissipation on an resistor $R$ of an AC current with the rms value of $I_{rms}=1A$ is equal to the heat dissipation of an DC current with $I_{DC}=1A$. +  * The heat dissipation on resistor $R$ of an AC current with the RMS value of $I_{\rm RMS} = 1~\rm A$ is equal to the heat dissipation of DC current with $I_{\rm DC} = 1~\rm A$. 
-  * To shorten writing formulas, the values of AC signals given with uppercase letters will represent the RMS value in the following: $U = U_{RMS}$, $I = I_{RMS}$. +  * To shorten writing formulas, the values of AC signals given with uppercase letters will represent the RMS value in the following: $U = U_{\rm RMS}$, $I = I_{\rm RMS}$. 
-  * It holds for AC signals ant their RMS values:+  * It holds for AC signals and their RMS values:
     * The resistance is $R={{U}\over{I}}$      * The resistance is $R={{U}\over{I}}$ 
     * The power dissipation on a resistor is $P=U\cdot I$     * The power dissipation on a resistor is $P=U\cdot I$
Zeile 195: Zeile 204:
  
 \begin{align*} \begin{align*}
-X & \sqrt{{{1}\over{T}}\cdot \int_{t=t_0}^{t_0 + T} x^2(t)  dt} \\ +X & \sqrt{{{1}\over{T}}\cdot \int_{t=t_0}^{t_0 + T} x^2(t)  {\rm d}t} \\ 
-  & \sqrt{{{1}\over{T}}\cdot \int_{t=0}  ^{T}      \hat{X}^2\cdot sin^2(\omega t)  dt} \\ +  & \sqrt{{{1}\over{T}}\cdot \int_{t=0}  ^{T}      \hat{X}^2\cdot                        \sin^2(     \omega t)  {\rm d}t} \\ 
-  & \sqrt{{{1}\over{T}}\cdot \int_{t=0}  ^{T}      \hat{X}^2\cdot {{1}\over{2}}\cdot (1- cos(2\cdot \omega t))  dt} \\ +  & \sqrt{{{1}\over{T}}\cdot \int_{t=0}  ^{T}      \hat{X}^2\cdot {{1}\over{2}}\cdot (1- \cos(2\cdot \omega t)) {\rm d}t} \\ 
-  & \sqrt{{{1}\over{T}}\cdot \hat{X}^2\cdot {{1}\over{2}}\cdot [t + {{1}\over{2\omega }}\cdot sin(2\cdot \omega t)]_{0}^{T}} \\+  & \sqrt{{{1}\over{T}}\cdot \hat{X}^2\cdot {{1}\over{2}}\cdot [t + {{1}\over{2\omega }}\cdot \sin(2\cdot \omega t)]_{0}^{T}} \\
   & \sqrt{{{1}\over{T}}\cdot \hat{X}^2\cdot {{1}\over{2}}\cdot (T - 0  + 0 - 0)} \\   & \sqrt{{{1}\over{T}}\cdot \hat{X}^2\cdot {{1}\over{2}}\cdot (T - 0  + 0 - 0)} \\
   & \sqrt{{{1}\over{2}}\cdot \hat{X}^2} \\   & \sqrt{{{1}\over{2}}\cdot \hat{X}^2} \\
Zeile 205: Zeile 214:
  
 This can also be seen in this [[https://www.youtube.com/watch?v=QW8ZXju1ruU|youtube video]]. This can also be seen in this [[https://www.youtube.com/watch?v=QW8ZXju1ruU|youtube video]].
 +</callout>
  
 <callout icon="fa fa-exclamation" color="red" title="Note:">  <callout icon="fa fa-exclamation" color="red" title="Note:"> 
-In the following we will often ose $\sqrt{2}X$ instead of $\hat{X}$, e.g.: $u(t)=\hat{X}\cdot sin(\omega t + \varphi_u) \rightarrow u(t)=\sqrt{2}{U}\cdot sin(\omega t + \varphi_u) $ +In the following chapters, we will often use for a physical value $x(t)$ a dependency on $\sqrt{2}X$ instead of $\hat{X}$.  
- +Therefore, the sinusoidal formula of a physical value $x$ will be : $x(t)=\hat{X}\cdot \sin(\omega t + \varphi_x) \rightarrow x(t)=\sqrt{2}{X}\cdot \sin(\omega t + \varphi_x) $
-</callout> +
  
 </callout> </callout>
Zeile 216: Zeile 224:
 <panel type="info" title="Exercise 6.3.2 The RMS Value of rectangular and triangular signals"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 6.3.2 The RMS Value of rectangular and triangular signals"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Calculate the RMS value of rectangular and triangular signals! Use similar symmetry simplificatinos like shown for AC signals. Compare it to the values shown in <imgref imageNo5>.+Calculate the RMS value of rectangular and triangular signals! Use similar symmetry simplifications as shown for AC signals.  
 +Compare it to the values shown in <imgref imageNo5>.
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
-==== 6.2.4 Comparison of the different averages ====+==== 6.2.4 Comparison of the different Averages ==== 
 + 
 +The following simulation shows the different values for averaging a rectangular, a sinusoidal, and a triangular waveform. \\ 
 +Be aware that one has to wait for a full period to see the resulting values on the right outputs of the average generating blocks. 
  
 <WRAP>  <WRAP> 
Zeile 230: Zeile 242:
  
  
-===== 6.3 AC Two-Poles =====+===== 6.3 AC Two-Terminal Networks =====
  
 <callout> <callout>
-==== Goals ====+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
  
   - know that real, lossy components are described by equivalent circuits of ideal components.   - know that real, lossy components are described by equivalent circuits of ideal components.
Zeile 241: Zeile 253:
 </callout> </callout>
  
-In the chapters [[simple_circuits|2. Simple Circuits]] and [[non-ideal_sources_and_two_pole_networks|3 Non-ideal Sources and Two Pole Networks]] we already have seen, that it is possible to reduce complex circuitries down to equivalent resistors (and ideal sources). This we will try to adopt for AC components, too.+In the chapters [[simple_circuits|2. Simple Circuits]] and [[non-ideal_sources_and_two_terminal_networks|3 Non-ideal Sources and Two-terminal Networks]] we already have seen, that it is possible to reduce complex circuitries down to equivalent resistors (and ideal sources). This we will try to adopt for AC components, too.
  
-We want to analyze how relationship between the current through a component and the voltage drow on this component behaveswhen an AC current is applied.+We want to analyze how the relationship between the current through a component and the voltage drop on this component behaves when an AC current is applied.
  
 ==== 6.3.1 Resistance ==== ==== 6.3.1 Resistance ====
  
-We start with Ohms law, which states, that the instantaneous voltage $u(t)$ is proportional to the instantaneous current $i(t)$ by the factor $R$. +We start with Ohm'law, which states, that the instantaneous voltage $u(t)$ is proportional to the instantaneous current $i(t)$ by the factor $R$. 
 $$u(t) = R \cdot i(t)$$ $$u(t) = R \cdot i(t)$$
  
-Then we insert the functions representing the instantaneous signals: $x(t)= \sqrt{2}{X}\cdot sin(\omega t + \varphi_x)$: +Then we insert the functions representing the instantaneous signals: $x(t)= \sqrt{2}{X}\cdot \sin(\omega t + \varphi_x)$: 
-$$\sqrt{2}{U}\cdot sin(\omega t + \varphi_u) = R \cdot \sqrt{2}{I}\cdot sin(\omega t + \varphi_i)$$+$$\sqrt{2}{U}\cdot \sin(\omega t + \varphi_u) = R \cdot \sqrt{2}{I}\cdot \sin(\omega t + \varphi_i)$$
  
 Since we know, that $u(t)$ must be proportional to $i(t)$ we conclude that for a resistor $\varphi_u=\varphi_i$! Since we know, that $u(t)$ must be proportional to $i(t)$ we conclude that for a resistor $\varphi_u=\varphi_i$!
  
 \begin{align*} \begin{align*}
-R &= {{\sqrt{2}{I}\cdot sin(\omega t + \varphi_i)}\over{\sqrt{2}{U}\cdot sin(\omega t + \varphi_i) }} \\ +R &= {{\sqrt{2}{U}\cdot \sin(\omega t + \varphi_i)}\over{\sqrt{2}{I}\cdot \sin(\omega t + \varphi_i) }} \\ 
   &= {{U}\over{I}}   &= {{U}\over{I}}
 \end{align*} \end{align*}
Zeile 263: Zeile 275:
 <imgcaption pic03 | time course of instantaneous voltage and current on a resistance>  <imgcaption pic03 | time course of instantaneous voltage and current on a resistance> 
 </imgcaption>  </imgcaption> 
-\\ {{drawio>timecourseresistance}} \\ +\\ {{drawio>timecourseresistance.svg}} \\ 
 </WRAP> </WRAP>
  
-This was not too hard und quite obvious. But, what about the other types of passive two-poles - namely the capacitance and inductance? +This was not too hard and quite obvious. But, what about the other types of passive two-terminal networks - namely the capacitance and inductance? 
  
 ==== 6.3.2 Capacitance ==== ==== 6.3.2 Capacitance ====
  
-For the capacitance we have the basis formula:+For the capacitance we have the basic formula:
 $$C={{Q}\over{U}}$$ $$C={{Q}\over{U}}$$
-This formula ia also true for the instantaneous values:+This formula is also true for the instantaneous values:
 $$C={{q(t)}\over{u(t)}}$$ $$C={{q(t)}\over{u(t)}}$$
-Additionally we know, that the instantaneous current is defined by $i(t)={{dq(t)}\over{dt}}$.+Additionallywe know, that the instantaneous current is defined by $i(t)={{{\rm d}q(t)}\over{{\rm d}t}}$.
  
 By this we can set up the formula: By this we can set up the formula:
 \begin{align*} \begin{align*}
-i(t) &= {{dq(t)}\over{dt}} \\ +i(t) &= {{{\rm d}q(t)}\over{{\rm d}t}} \\ 
-     &= {{d}\over{dt}}\left( C \cdot u(t) \right)+     &= {{\rm d}\over{{\rm d}t}}\left( C \cdot u(t) \right)
 \end{align*} \end{align*}
  
 Now, we insert the functions representing the instantaneous signals and calculate the derivative: Now, we insert the functions representing the instantaneous signals and calculate the derivative:
 \begin{align*} \begin{align*}
- \sqrt{2}{I}\cdot sin(\omega t + \varphi_i) &= {{d}\over{dt}}\left( C \cdot \sqrt{2}{U}\cdot sin(\omega t + \varphi_u)  \right) \\ + \sqrt{2}{I}\cdot \sin(\omega t + \varphi_i) &= {{\rm d}\over{{\rm d}t}}\left( C \cdot \sqrt{2}{U}\cdot              \sin(\omega t + \varphi_u)  \right) \\ 
-                                            & C \cdot \sqrt{2}{U}\cdot \omega \cdot cos(\omega t + \varphi_u) \\ \\ +                                             &                               C \cdot \sqrt{2}{U}\cdot \omega \cdot \cos(\omega t + \varphi_u) \\ \\ 
-        {I}\cdot sin(\omega t + \varphi_i) & C \cdot {U}\cdot \omega \cdot sin(\omega t + \varphi_u + {{1}\over{2}}\pi)  \tag{6.3.1}+        {I}\cdot \sin(\omega t + \varphi_i)  & C \cdot {U}\cdot \omega \cdot                                       \sin(\omega t + \varphi_u + {{1}\over{2}}\pi)  \tag{6.3.1}
 \end{align*} \end{align*}
  
Zeile 298: Zeile 310:
 \omega t + \varphi_i &= \omega t + \varphi_u + {{1}\over{2}}\pi \\ \omega t + \varphi_i &= \omega t + \varphi_u + {{1}\over{2}}\pi \\
            \varphi_i &           \varphi_u + {{1}\over{2}}\pi \\            \varphi_i &           \varphi_u + {{1}\over{2}}\pi \\
-\varphi_u -\varphi_i &           - {{1}\over{2}}\pi +\varphi_u -\varphi_i &                     - {{1}\over{2}}\pi 
 \end{align*} \end{align*}
  
Zeile 305: Zeile 317:
 <callout icon="fa fa-exclamation" color="red" title="Notice:"> <callout icon="fa fa-exclamation" color="red" title="Notice:">
  
-In order not to mix up the definitions, for AC signals the fraction of rms voltage by rms current is called **apparent impedance** $Z$ (in German: Scheinwiderstand or Impedanz). \\  +In order not to mix up the definitions, for AC signals the fraction of RMS voltage by RMS current is called **(apparentimpedance** $Z$ (in German: Scheinwiderstand or Impedanz). \\  
-The apparent impedance is generally defined as +The impedance is generally defined as 
 $$Z = {{U}\over{I}}$$ $$Z = {{U}\over{I}}$$
  
-Only for pure resistor two pole the apparent impedance $Z_R$ is equal to the value of the resistance: $Z_R=R$. +Only for pure resistor as a two-terminal network, the impedance $Z_R$ is equal to the value of the resistance: $Z_R=R$. 
  
-For the pure capacitive two pole the apparent impedance $Z_C$ is $Z_C={{1}\over{\omega \cdot C}}$.  +For the pure capacitive as a two-terminal network, the impedance $Z_C$ is $Z_C={{1}\over{\omega \cdot C}}$.  
 </callout> </callout>
  
Zeile 317: Zeile 329:
 <imgcaption pic04 | time course of instantaneous voltage and current on a capacitance>  <imgcaption pic04 | time course of instantaneous voltage and current on a capacitance> 
 </imgcaption>  </imgcaption> 
-\\ {{drawio>timecoursecapacitance}} \\ +\\ {{drawio>timecoursecapacitance.svg}} \\ 
 </WRAP> </WRAP>
  
Zeile 323: Zeile 335:
 <imgcaption fal01 | time course of instantaneous voltage and current on a capacitance>  <imgcaption fal01 | time course of instantaneous voltage and current on a capacitance> 
 </imgcaption>\\ </imgcaption>\\
-{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5BOJyWoVaYCsAOMAWAZgDZJStiB2AokLSOkWrAUwFowwAoAJxACZ++cGH4hCkYZzEMw7UVwDG4ySLESpCMTNjxEaA0ibQklLIX45IYHJYo4McbgHMVm9av6QHDSFwBuakFeDtJQ4HQMWOFg0FiUkJQIxBZUCPg4ycQYWFyuYQWi4FrhfgBGAkIgVuL4lALWUFwA7g2hRYJSRX4AHuCJAvjRJNFCDlIOPCwAzgCW0wAuAPY8ADrTAHYsijPTAIY8AJ7rAGYr63MAtgCuADZ7C7NLG1xLINkyTPr9GD4C7+IuEA noborder}}+{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5BOJyWoVaYCsAOMAWAZgDZJStiB2AokLSOkWrAUwFowwAoAJxACZ++cGH4hCkYZzEMw7UVwDG4ySLESpCMTNjxEaA0hBt80LELCFzxfoQmJCdLgHMVm9av6QcUKFwBuakFePtK+EPSMsmaUkJQIxIT8VAj4OAnEGFguQWF5Wr6QXABGAkIgOAyE+JQCkBBFAO51oaJlUm1FAB7gcQL4WOLEg0I+Uj48LADOAJZTAC4A9jwAOlMAdiyK01MAhjwAnmsAZstrswC2AK4ANrvzM4vrXIsgmTJM+r0YkPyDDGJMoQuEA noborder}}
 </WRAP> </WRAP>
  
Zeile 329: Zeile 341:
  
 The inductance will here be introduced shortly - the detailed introduction is part of [[electrical_engineering_2:start|electrical engineering 2]]. \\ The inductance will here be introduced shortly - the detailed introduction is part of [[electrical_engineering_2:start|electrical engineering 2]]. \\
-For the capacitance $C$ we had the situation, that it reacts to a voltage change ${{d}\over{dt}}u(t)$ with a counteracting current: +For the capacitance $C$ we had the situation, that it reacts to a voltage change ${{\rm d}\over{{\rm d}t}}u(t)$ with a counteracting current: 
-$$i(t)= C \cdot {{d}\over{dt}}u(t)$$ +$$i(t)= C \cdot {{\rm d}\over{{\rm d}t}}u(t)$$ 
-This is due to the fact, that the capacity stores charge carriers $q$. It appears that "the capacitance does not like voltage changes and reacts with a compensating current". When the voltage on a capacity drops, the capacity supplies a current - when the voltage rises the capacity drains a current.+This is due to the fact, that the capacity stores charge carriers $q$.  
 +It appears that "the capacitance does not like voltage changes and reacts with a compensating current" 
 +When the voltage on a capacity drops, the capacity supplies a current - when the voltage rises the capacity drains a current.
  
-For an inductance $L$ it is just the other way around: "the inductance does not like current changes and reacts with a compensating voltage drop". Once the current changes the inductance will create a voltage drop that counteracts and continues the current: A current change ${{d}\over{dt}}i(t)$ lead to a voltage drop $u(t)$: +For an inductance $L$ it is just the other way around: "the inductance does not like current changes and reacts with a compensating voltage drop". Once the current changes the inductance will create a voltage drop that counteracts and continues the current: A current change ${{\rm d}\over{{\rm d}t}}i(t)$ leads to a voltage drop $u(t)$: 
-$$u(t)= L \cdot {{d}\over{dt}}i(t)$$ +$$u(t)= L \cdot {{\rm d}\over{{\rm d}t}}i(t)$$ 
-The proportionality factor here is $L$, the value of the inductance, and it is measured in $[L] = 1H = 1\Henry$.+The proportionality factor here is $L$, the value of the inductance, and it is measured in $[L] = 1~\rm H = 1~Henry$.
  
 We can now again insert the functions representing the instantaneous signals and calculate the derivative: We can now again insert the functions representing the instantaneous signals and calculate the derivative:
 \begin{align*} \begin{align*}
- \sqrt{2}{U}\cdot sin(\omega t + \varphi_u) &= L \cdot {{d}\over{dt}}\left( \sqrt{2}{I}\cdot sin(\omega t + \varphi_i)  \right) \\ + \sqrt{2}{U}\cdot \sin(\omega t + \varphi_u) &= L \cdot {{\rm d}\over{{\rm d}t}}\left( \sqrt{2}{I}\cdot \sin(\omega t + \varphi_i)  \right) \\ 
-                                            &= L \cdot \sqrt{2}{I}\cdot \omega \cdot cos(\omega t + \varphi_i) \\ \\ +                                             &= L \cdot                   \sqrt{2}{I}\cdot \omega \cdot \cos(\omega t + \varphi_i) \\ \\ 
-         {U}\cdot sin(\omega t + \varphi_u) &= L \cdot {I}\cdot \omega \cdot sin(\omega t + \varphi_i + {{1}\over{2}}\pi)  \tag{6.3.2}+         {U}\cdot \sin(\omega t + \varphi_u) &= L \cdot                           {I}\cdot \omega \cdot \sin(\omega t + \varphi_i + {{1}\over{2}}\pi)  \tag{6.3.2}
 \end{align*} \end{align*}
  
Zeile 347: Zeile 361:
 \begin{align*} \begin{align*}
          U & L \cdot {I}\cdot \omega \\          U & L \cdot {I}\cdot \omega \\
-\boxed{Z_L = {{U}\over{I}} = \omega \cdot L}+\boxed {Z_L = {{U}\over{I}} = \omega \cdot L}
 \end{align*} \end{align*}
 and: and:
Zeile 353: Zeile 367:
 \omega t + \varphi_u &= \omega t + \varphi_i + {{1}\over{2}}\pi \\ \omega t + \varphi_u &= \omega t + \varphi_i + {{1}\over{2}}\pi \\
            \varphi_u &           \varphi_i + {{1}\over{2}}\pi \\            \varphi_u &           \varphi_i + {{1}\over{2}}\pi \\
-\boxed{\varphi = \varphi_u -\varphi_i =            + {{1}\over{2}}\pi }+\boxed{\varphi = \varphi_u -\varphi_i =      + {{1}\over{2}}\pi }
 \end{align*} \end{align*}
  
Zeile 359: Zeile 373:
  
 <WRAP>  <WRAP> 
-<imgcaption pic05 | time course of instantaneous voltage and current on inductance> +<imgcaption pic05 | time course of instantaneous voltage and current on an inductance> 
 </imgcaption>  </imgcaption> 
-\\ {{drawio>timecourseinductance}} \\ +\\ {{drawio>timecourseinductance.svg}} \\ 
 </WRAP> </WRAP>
  
 <WRAP>  <WRAP> 
-<imgcaption fal02 | time course of instantaneous voltage and current on inductance> +<imgcaption fal02 | time course of instantaneous voltage and current on an inductance> 
 </imgcaption>\\ </imgcaption>\\
 {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5BOJyWoVaYCsAOMAWAZgDZJStiB2AokfELOwhgUwFowwAoAJxACZ+9TvxCFIwsKMjh2UrgHMxE8AlHj6-SDihQuAN3BSjorTpG6IWGYxlhoWSpEoJihflQT4cr4hiyKJkEWYGq6kFwARgJCIDgyhPiUApAQEQDuKebGgpLSXAAe4M4C+IwkjEI6wjo8LADOAJb1AC4A9jwAOvUAdiwAxg31AIY8AJ7dAGYd3U0AtgCuADbDLY1tPVxLynk7qtIY8HAQ7lrQ+MQIoSSk+GAqEW0MArr4iOj3DEL8ONA6MqJylwgA noborder}} {{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5BOJyWoVaYCsAOMAWAZgDZJStiB2AokfELOwhgUwFowwAoAJxACZ+9TvxCFIwsKMjh2UrgHMxE8AlHj6-SDihQuAN3BSjorTpG6IWGYxlhoWSpEoJihflQT4cr4hiyKJkEWYGq6kFwARgJCIDgyhPiUApAQEQDuKebGgpLSXAAe4M4C+IwkjEI6wjo8LADOAJb1AC4A9jwAOvUAdiwAxg31AIY8AJ7dAGYd3U0AtgCuADbDLY1tPVxLynk7qtIY8HAQ7lrQ+MQIoSSk+GAqEW0MArr4iOj3DEL8ONA6MqJylwgA noborder}}
Zeile 373: Zeile 387:
  
 Remember the formulas for the different pure loads: Remember the formulas for the different pure loads:
-^Load        ^   ^apparent impedance $Z={{U}\over{I}}$ ^ phase $\varphi$                    ^ +<tabcaption tab01 Formulas for the different pure loads>
-|Resistance  |$R$| $Z_R = R $                          | $\varphi_R = 0$                    | +
-|Capacitance |$C$| $Z_C = {{1}\over{\omega \cdot C}} $ | $\varphi_C =  - {{1}\over{2}}\pi $ | +
-|Impedance   |$L$| $Z_L = \omega \cdot L             $ | $\varphi_L =  + {{1}\over{2}}\pi $ |+
  
 +^ Load              ^ impedance $Z={{U}\over{I}}$         ^ phase $\varphi$                     ^
 +| Resistance   | $R$  | $Z_R = R $                          | $\varphi_R = 0$                     |
 +| Capacitance  | $C$  | $Z_C = {{1}\over{\omega \cdot C}}$  | $\varphi_C =  - {{1}\over{2}}\pi $  |
 +| Inductance   | $L$  | $Z_L = \omega \cdot L            $  | $\varphi_L =  + {{1}\over{2}}\pi $  |
 +</tabcaption>
  
-One way to memorize the phase shift is given bei the word **CIVIL**: +One way to memorize the phase shift is given by the word **CIVIL**: 
   * **<fc #ff0000>CIV</fc>IL**: for a capacitance <fc #ff0000>C</fc> the current <fc #ff0000>I</fc> leads the voltage <fc #ff0000>V</fc>. \\ Therefore the phase angle $\varphi_I$ of the current is larger than the phase angle $\varphi_U$ of the voltage: $\rightarrow \varphi = \varphi_U - \varphi_I < 0 $.   * **<fc #ff0000>CIV</fc>IL**: for a capacitance <fc #ff0000>C</fc> the current <fc #ff0000>I</fc> leads the voltage <fc #ff0000>V</fc>. \\ Therefore the phase angle $\varphi_I$ of the current is larger than the phase angle $\varphi_U$ of the voltage: $\rightarrow \varphi = \varphi_U - \varphi_I < 0 $.
   * **CI<fc #00ff00>VIL</fc>**: for an inductance <fc #00ff00>L</fc> the voltage <fc #00ff00>V</fc> leads the current <fc #00ff00>I</fc> \\ Therefore the phase angle $\varphi_U$ of the voltge is larger than the phase angle $\varphi_I$ of the current: $\rightarrow \varphi = \varphi_U - \varphi_I > 0 $.   * **CI<fc #00ff00>VIL</fc>**: for an inductance <fc #00ff00>L</fc> the voltage <fc #00ff00>V</fc> leads the current <fc #00ff00>I</fc> \\ Therefore the phase angle $\varphi_U$ of the voltge is larger than the phase angle $\varphi_I$ of the current: $\rightarrow \varphi = \varphi_U - \varphi_I > 0 $.
 </callout> </callout>
  
-By the concept of AC two-poles we are also able to use the DC methods of network analysis in order to solve AC networks.+For the concept of AC two-terminal networks, we are also able to use the DC methods of network analysis to solve AC networks.
  
-===== 6.4 Complex Impedance =====+===== 6.4 Complex Values in Electrical Engineering =====
  
 <callout> <callout>
-==== Goals ====+=== Learning Objectives ===
  
-After this lesson, you should:+By the end of this section, you will be able to:
   - know how sine variables can be symbolized by a vector.   - know how sine variables can be symbolized by a vector.
   - know which parameters can determine a sinusoidal quantity.   - know which parameters can determine a sinusoidal quantity.
-  - be able to graphically derive a pointer diagram for several existing sine variables. +  - graphically derive a pointer diagram for several existing sine variables. 
-  - be able to plot the phase shift on the vector and time plots. +  - plot the phase shift on the vector and time plots. 
-  - Be able to add sinusoidal quantities in vector and time representation. +  - add sinusoidal quantities in vector and time representation. 
-  - know and be able to apply the impedance of components.+  - know and apply the impedance of components.
   - know the frequency dependence of the impedance of the components. In particular, you should know the effect of the ideal components at very high and very low frequencies and be able to apply it for plausibility checks.   - know the frequency dependence of the impedance of the components. In particular, you should know the effect of the ideal components at very high and very low frequencies and be able to apply it for plausibility checks.
 </callout> </callout>
  
-Up to now, we used for the AC signals the formula $x(t)= {{1}\over{\sqrt{2}}} X \cdot sin (\omega t + \varphi_x)$ - which was quite obvious. \\ 
  
-However, there is an alternative way to look onto the alternating sinusidal signals. +The following two videos explain the basic terms of the complex AC calculus: Impedance, Reactance, Resistance 
-For this, we look first on a different, but already familiar problem (see <imgref pic06>).  + 
-  - A mechanical, linear spring with the characteristic constant $D$ is displaced due a mass $m$ in the Earth's gravitational field. The deflection only based on the gravitational field is $X_0$.+{{youtube>fSPcuOu_bf8}} 
 + 
 +{{youtube>WmTlioVfS78}} 
 + 
 + 
 +==== 6.4.1 Representation and Interpretation  ==== 
 + 
 +Up to now, we used for the AC signals the formula $x(t)= \sqrt{2} X \cdot \sin (\omega t + \varphi_x)$ - which was quite obvious. \\ 
 + 
 +However, there is an alternative way to look at the alternating sinusoidal signals. 
 +For this, we look first at a different, but already familiar problem (see <imgref pic06>).  
 +  - A mechanical, linear spring with the characteristic constant $D$ is displaced due to a mass $m$ in the Earth's gravitational field. The deflection only based on the gravitational field is $X_0$.
   - At the time $t_0=0$ , we deflect this spring a bit more to $X_0 + x(t_0)=X_0 + \hat{X}$ and therefore induce energy into the system.    - At the time $t_0=0$ , we deflect this spring a bit more to $X_0 + x(t_0)=X_0 + \hat{X}$ and therefore induce energy into the system. 
-  - When the mass is released, the mass will spring up and down for $t>0$. The signal can be shown as shadow when the mass is illuminated sideways. \\ For $t>0$, the energy is continuously shifted between poential energy (deflection $x(t)$ around $X_0$) and kinetic energy (${{d}\over{dt}}x(t)$) +  - When the mass is released, the mass will spring up and down for $t>0$. The signal can be shown as shadow when the mass is illuminated sideways. \\ For $t>0$, the energy is continuously shifted between potential energy (deflection $x(t)$ around $X_0$) and kinetic energy (${{\rm d}\over{{\rm d}t}}x(t)$) 
-  - When looking onto the course of time of $x(t)$, the signal will behave as: $x(t)= \hat{X} \cdot sin (\omega t + \varphi_x)$ +  - When looking onto the course of time of $x(t)$, the signal will behave as: $x(t)= \hat{X} \cdot \sin (\omega t + \varphi_x)$ 
-  - The movement of the shadow can also be created by the sideways shadow of a stick on a rotating disc. \\ This means, that a two dimensional rotation is reduced down to a single dimension.+  - The movement of the shadow can also be created by the sideways shadow of a stick on a rotating disc. \\ This means, that a two-dimensional rotation is reduced down to a single dimension.
  
 <WRAP>  <WRAP> 
-<imgcaption pic06 | interpretation of sinusidal deflection of a spring> +<imgcaption pic06 | interpretation of sinusoidal deflection of a spring> 
 </imgcaption>  </imgcaption> 
-\\ {{drawio>deflectionspring}} \\ +\\ {{drawio>deflectionspring.svg}} \\ 
 </WRAP> </WRAP>
  
-The transformation of the two dimensional rotation to a one dimensional sinusidal signal is also shown in <imgref BildNr00>.+The transformation of the two-dimensional rotation to a one-dimensional sinusoidal signal is also shown in <imgref BildNr00>.
  
 <panel> <panel>
-<imgcaption BildNr00 | Creation of the sinusidal signal from a rotational movement>+<imgcaption BildNr00 | Creation of the sinusoidal signal from a rotational movement>
 </imgcaption> \\ </imgcaption> \\
 <collapse id="geogebra" collapsed="true"><well> <collapse id="geogebra" collapsed="true"><well>
 {{url>https://www.geogebra.org/material/iframe/id/wSHXZMyy/width/1600/height/800/border/888888/rc/false/ai/false/sdz/false/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5 500,250 noborder}} {{url>https://www.geogebra.org/material/iframe/id/wSHXZMyy/width/1600/height/800/border/888888/rc/false/ai/false/sdz/false/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5 500,250 noborder}}
-Klick on the box "animate?"+Click on the box "animate?"
 </well></collapse> </well></collapse>
  
Zeile 433: Zeile 459:
  
  
-The two dimensional rotation can be represented with a complex number in Euler's formula. It combines the exponential representation with real part $\Re$ and imaginary part $\Im$ of a complex value: +The two-dimensional rotation can be represented with a complex number in Euler's formula.  
-$$ \underline{x}(t)=\hat{X}\cdot e^{j(\omega t + \varphi_x)} = \Re(\underline{x}) + j\cdot \Im(\underline{x})$$+It combines the exponential representation with real part $\Re$ and imaginary part $\Im$ of a complex value: 
 +$$ \underline{x}(t)=\hat{X}\cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} = \Re(\underline{x}) + {\rm j}\cdot \Im(\underline{x})$$
  
-For the imaginary unit $i$ the letter $j$ is used in electical engineeringsince the letter $i$ is already taken for currents.+For the imaginary unit ${\rm i}$ the letter ${\rm j}$ is used in electrical engineering since the letter ${\rm i}$ is already taken for currents.
  
 <WRAP>  <WRAP> 
-<imgcaption pic07 | represenation of a phasor on the complex plane> +<imgcaption pic07 | representation of a phasor on the complex plane> 
 </imgcaption>  </imgcaption> 
-\\ {{drawio>phasorcomplexplane}} \\ +\\ {{drawio>phasorcomplexplane.svg}} \\ 
 </WRAP> </WRAP>
  
 +==== 6.4.2 Complex Current and Voltage ====
  
 +The concepts of complex numbers shall now be applied to voltages and currents. 
 +Up to now, we used the following formula to represent alternating voltages:
  
 +$$u(t)= \sqrt{2} U \cdot \sin (\varphi)$$
  
-===== 6.5 Complex AC Impedance =====+This is now interpreted as the instantaneous value of a complex vector $\underline{u}(t)$, which rotates given by the time-dependent angle $\varphi \omega t + \varphi_u$.
  
-<callout+<WRAP>  
-==== Goals ====+<imgcaption pic08 | representation of a voltage phasor on the complex plane>  
 +</imgcaption>  
 +\\ {{drawio>voltagephasorcomplexplane.svg}} \\  
 +</WRAP>
  
-After this lesson you should:+The parts on the complex plane are then given by: 
 +  - The real part      $\Re{(\underline{u}(t))} = \sqrt{2}U \cdot \cos (\omega t + \varphi_u)$  
 +  - The imaginary part $\Im{(\underline{u}(t))} = \sqrt{2}U \cdot \sin (\omega t + \varphi_u)$  
 + 
 +This is equivalent to the complex phasor $\underline{u}(t)=\sqrt{2}U \cdot {\rm e} ^{{\rm j}  (\omega t + \varphi_u)}$ 
 + 
 +The complex phasor can be separated: 
 +\begin{align*} 
 +\underline{u}(t) &=\sqrt{2}                          U \cdot {\rm e}^{{\rm j} (\omega t + \varphi_u)} \\ 
 +                 &=\sqrt{2}\color{blue}             {U \cdot {\rm e}^{{\rm j} \varphi_u}}  
 +                                                       \cdot {\rm e}^{{\rm j} \omega t} \\ 
 +                 &=\sqrt{2}\color{blue}{\underline{U}} \cdot {\rm e}^{{\rm j} \omega t} \\ 
 +\end{align*} 
 + 
 +The **fixed phasor** (in German: //komplexer Festzeiger//) of the voltage is given by $\color{blue}{\underline{U}}= \color{blue}{U  \cdot e ^{j  \varphi_u}} $ 
 + 
 +Generally, from now on not only the voltage will be considered as a phasor, but also the current $\underline{I}$ and derived quantities like the impedance $\underline{X}$. \\ 
 +Therefore, the known properties of complex numbers from Mathematics 101 can be applied: 
 +  * A multiplication with $j\omega$ equals a phase shift of $+90°$ 
 +  * A multiplication with ${{1}\over{j\omega}}$ equals a phase shift of $-90°$ 
 + 
 +===== 6.5 Complex Impedance ===== 
 + 
 +<callout> 
 +=== Learning Objectives ===
  
-  - Be able to draw and read pointer diagrams. +By the end of this section, you will be able to
-  - Know and be able to apply the complex value formulas of impedance, reactance, resistance.+  - draw and read pointer diagrams. 
 +  - know and apply the complex value formulas of impedance, reactance, and resistance.
 </callout> </callout>
  
-==== Video ====+==== 6.5.1 Introduction to Complex Impedance ====
  
-Pointer diagrams; complex alternating current calculus.+The complex impedance is "nearly" similar calculated like the resistanceIn the subchapters before, that impedance $Z$ was calculated by $Z=\frac{U}{I}$. \\ 
 +Now the complex impedance is:
  
-{{youtube>ZSDpIpnlTbY}}+\begin{align*} 
 +\underline{Z}&=\frac{\underline{U}}{\underline{I}} \\ 
 +             &= \Re{(\underline{Z})} + {\rm j} \cdot \Im{(\underline{Z})} \\ 
 +             &= R                    + {\rm j} \cdot X \\ 
 +             &= Z \cdot {\rm e}^{{\rm j} \varphi} \\ 
 +             &= Z \cdot (\cos \varphi + j \cdot \sin \varphi ) 
 +\end{align*}
  
-Complex alternating current calculation - basic termsImpedance, Reactance, Resistance+With  
 +  * the resistance $R$ (in German//Widerstand//      as the pure real part 
 +  * the reactance  $X$ (in German: //Blindwiderstand// as the pure imaginary part 
 +  * the impedance  $Z$ (in German: //Scheinwiderstand//) as the complex number given by the __complex__ addition of resistance and the reactance as a complex number
  
-{{youtube>fSPcuOu_bf8}}+The impedance can be transformed from Cartesian to polar coordinates by:  
 +  * $Z=\sqrt{R^2 + X^2}$ 
 +  * $\varphi = \arctan  \frac{X}{R
 +The other way around it is possible to transform by: 
 +  * $R = Z \cos \varphi$ 
 +  * $X = Z \sin \varphi$
  
-Capacitor and inductance as complex resistors; pointer diagram+value - and therefore a phasor - can simply ==== 6.5.2 Application on pure Loads ====
  
-{{youtube>LM2G3cunKp4}}+With the complex impedance in mind, the <tabref tab01can be expanded to: 
  
-detailed explanation of impedances+<tabcaption tab02 | Formulas for the different pure loads>
  
-{{youtube>WmTlioVfS78}}+^ Load      $\phantom{U\over I}$  ^                        ^ integral representation $\phantom{U\over I}$  ^ complex impedance $\underline{Z}={{\underline{U}}\over{\underline{I}}}$  ^ impedance $Z \phantom{U\over I}$    ^ phase $\varphi \phantom{U\over I}$            ^ 
 +| Resistance                      | $R\phantom{U\over I}$  | ${u} = R \cdot {i}$                           | $Z_R = R $                                                                     | $Z_R = R $                          | $\varphi_R = 0$                               | 
 +| Capacitance                     | $C$                    | ${u} ={{1}\over{C}}\cdot \int {\rm i} dt$     | $Z_C = {{1}\over{{\rm j}\omega \cdot C}} = {{-{\rm j}}\over{\omega \cdot C}}$  | $Z_C = {{1}\over{\omega \cdot C}}$  | $\varphi_C = -{{1}\over{2}}\pi \hat{=} -90°$ 
 +| Inductance                      | $L$                    | ${u} = L \cdot {{\rm d}\over{{\rm d}t}} {i}$  | $Z_L = {\rm j} \omega \cdot L                                        $         | $Z_L = \omega \cdot L            $  | $\varphi_L = +{{1}\over{2}}\pi \hat{=} +90°$ 
 +</tabcaption> 
 + 
 +\\ \\ 
 +The relationship between ${\rm j}$ and integral calculus should be clear:  
 +  - The derivative of a sinusoidal value - and therefore a phasor - can simply be written as "$\cdot {\rm j}\omega$", \\ which also means a phase shift of $+90°$: \\ \begin{align*}{{\rm d}\over{{\rm d}t}} {\rm e}^{{\rm j}(\omega t + \varphi_x)} = {\rm j} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)}\end{align*} 
 +  - The integral of a sinusoidal value - and therefore a phasor - can simply be written as "$\cdot (-{{1}\over{ {\rm j}\omega}})$", \\ which also means a phase shift of $-90°$.((in general, here the integration constant must be considered. This is however often neglectable since only AC values (without a DC value) are considered.)) <WRAP>  
 +\begin{align*} 
 +                     \int {\rm e}^{{\rm j}(\omega t + \varphi_x)}  
 +  = {{1}\over{\rm j\omega}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)}  
 +  = -{{\rm j}\over{\omega}} \cdot {\rm e}^{{\rm j}(\omega t + \varphi_x)} 
 +\end{align*} 
 +</WRAP> 
 + 
 +Once a fixed input voltage is given, the voltage phasor $\underline{U}$, the current phasor $\underline{I}$, and the impedance phasor $\underline{Z}$. In <imgref pic10> these phasors are shown. 
 + 
 +<WRAP>  
 +<imgcaption pic10 | phasors of the pure loads>  
 +</imgcaption>  
 +\\ {{drawio>phasorspureloads.svg}} \\  
 +</WRAP> 
 + 
 +==== 6.5.3 Application on Impedance Networks ==== 
 +=== Simple Networks === 
 + 
 +In the chapter [[:electrical_engineering_1:simple_circuits#Kirchhoff's Circuit Laws]] we already had a look at simple networks like a series or parallel circuit of resistors. \\   
 +These formulas not only apply to ohmic resistors but also to impedances: 
 + 
 +<WRAP>  
 +<imgcaption pic11 | Simple Networks>  
 +</imgcaption>  
 +\\ {{drawio>SimpleNetworks.svg}} \\  
 +</WRAP> 
 + 
 +Similarly, the voltage divider, the current divider, the star-delta transformation, and the Thevenin and Northon Theorem can be used, by substituting resistances with impedances. 
 +This means for example, every linear source can be represented by an output impedance $\underline{Z}_o$ and an ideal voltage source $\underline{U}$. 
 + 
 +=== More "complex" Networks === 
 + 
 +For more complex problems having AC values in circuitries, the following approach is beneficial. \\ 
 +This concept will be used in the next chapter and in circuit design. 
 + 
 +<WRAP>  
 +<imgcaption pic12 | Approach for AC cicruitries>  
 +</imgcaption>  
 +\\ {{drawio>ACapproach.svg}} \\  
 +</WRAP> 
 +\\ 
 + 
 +<callout icon="fa fa-exclamation" color="red" title="Notice:"> 
 +<WRAP> 
 +For a complex number are always two values are needed. These are either 
 +  - the real part (e.g. the resistance) and the imaginary part (e.g. the reactance), or 
 +  - the absolute value (e.g. the absolute value of the impedance) and the phase 
 + 
 +Therefore, instead of the form $\underline{Z}=Z\cdot {\rm e}^{{\rm j}\varphi}$ for the phasors often the form $Z\angle{\varphi}$ is used. 
 +</WRAP> 
 +</callout>
  
  
 ===== Exercises ===== ===== Exercises =====
  
-==== Video ====+<panel type="info" title="Exercise 6.3.1 Impedance of single Components I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +A coil has a reactance of $80\Omega$ at a frequency of $500 ~\rm Hz$. At which frequencies the impedance will have the following values? 
 +  - $85  ~\Omega$ 
 +  - $120 ~\Omega$ 
 +  - $44  ~\Omega$
  
-Parallel connection of complex resistors impedances \\ Why can a circuit with impedances only act purely ohmic?+<button size="xs" type="link" collapse="Loesung_6_3_1_1_Endergebnis">{{icon>eye}} Solution</button><collapse id="Loesung_6_3_1_1_Endergebnis" collapsed="true"> 
 +When the frequency changes the reactance changes but the inductance is constant. Therefore, the inductance is needed. \\ 
 +It can be calculated by the given reactance for $f_0 = 500 ~\rm Hz$. 
 +\begin{align*} 
 +X_{L0}&=2\pi f_0L\\ 
 +L     &=\frac{X_{L0}}{2\pi f_0} 
 +\end{align*}
  
-{{youtube>u6lE4gIIfBw}}+On the other hand, one can also use the rule of proportion here, and circumvent the calculation of inductance.\\ 
 +It is possible to calculate the reactance at other frequencies with the given reactance. 
 +\begin{align*} 
 +X_L&=2\pi fL\\ 
 +f  &=\frac{X_L}{2\pi L}\\ 
 +   &=\frac{X_L}{X_{L0}}f_0 
 +\end{align*}
  
-more complex exam taskcomplex circuit I+With the values given: 
 +\begin{equation*} 
 +f_1 = \frac{85 ~\Omega}{80~\Omega}\cdot500~{\rm Hz}\qquad  
 +f_2 = \frac{120~\Omega}{80~\Omega}\cdot500~{\rm Hz}\qquad  
 +f_3 = \frac{44 ~\Omega}{80~\Omega}\cdot500~{\rm Hz} 
 +\end{equation*}
  
-{{youtube>RPK0wkyLyMY}}+</collapse><button size="xs" type="link" collapse="Loesung_6_3_1_2_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_6_3_1_2_Endergebnis" collapsed="true"> 
 +\begin{equation*} 
 +f_1=531.25~{\rm Hz}\qquad f_2=750~{\rm Hz}\qquad f_3=275~{\rm Hz} 
 +\end{equation*} 
 +</collapse> 
 +</WRAP></WRAP></panel>
  
-more complex exam task: complex circuit II+<panel type="info" title="Exercise 6.3.2 Impedance of single Components II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +A capacitor with $5 ~{\rm µF}$ is connected to a voltage source which generates $U_\sim = 200 ~{\rm V}$. At which frequencies the following currencies can be measured? 
 +  - $0.5 ~\rm A$ 
 +  - $0.8 ~\rm A$ 
 +  - $1.3 ~\rm A$ 
 +</WRAP></WRAP></panel>
  
-{{youtube>oueHAbLOSPA}}+<panel type="info" title="Exercise 6.3.3 Impedance of single Components III"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +A capacitor shall have a capacity of $4.7 ~{\rm µF} \pm 10~\%$. This capacitor shall be used with an AC voltage of $400~\rm V$ and $50~\rm Hz$. 
 +What is the possible current range which could be found on this component? 
 +</WRAP></WRAP></panel>
  
-Examination task: complex circuit III+<panel type="info" title="Exercise 6.5.1 Two voltage sources"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +Two ideal AC voltage sources $1$ and $2$ shall generate the RMS voltage drops $U_1 = 100~\rm V$ and $U_2 = 120~\rm V$. \\  
 +The phase shift between the two sources shall be $+60°$. The phase of source $1$ shall be $\varphi_1=0°$. \\ 
 +The two sources shall be located in series.
  
-{{youtube>8MMzeeHNjIw}}+<WRAP indent1. Draw the phasor diagram for the two voltage phasors and the resulting phasor.
  
 +<WRAP indent><button size="xs" type="link" collapse="Loesung_6_5_1_Endergebnis">{{icon>eye}} Solution 1</button><collapse id="Loesung_6_5_1_Endergebnis" collapsed="true"> 
 +The phasor diagram looks roughly like this: 
 +{{drawio>phasordiagram6511.svg}} 
  
 +</collapse></WRAP></WRAP><WRAP indent>2. Calculate the resulting voltage and phase.
 +<WRAP indent><button size="xs" type="link" collapse="Loesung_6_5_1_2_Solution">{{icon>eye}} Solution 2</button><collapse id="Loesung_6_5_1_2_Solution" collapsed="true"> 
 +By the law of cosine, we get: 
 +\begin{align*} 
 +U&= \sqrt{{{U_1  }^2}+{{U_1  }^2}-2{U_1       } \cdot{U_2  }\cdot \cos(180°- {\varphi_2})} \\
 + &= \sqrt{{{100~V}^2}+{{120~V}^2}-2\cdot{100~V} \cdot{120~V}\cdot \cos(120°)}
 +\end{align*} 
  
 +The angle is by the tangent of the relation of the imaginary part to the real part of the resulting voltage.
 +\begin{align*} 
 +\varphi&= \arctan 2 \left(\frac{Im\{\underline{U}\}}                        {Re\{\underline{U}\}} \right)\\
 +       &= \arctan 2 \left(\frac{Im\{\underline{U}_1\}+Im\{\underline{U}_2\}}{Re\{\underline{U}_1\}+\{\underline{U}_2\}} \right)\\
 +       &= \arctan 2 \left(\frac{{U}_2      \cdot\sin(\varphi_2)}{{U}_1      +{U}_2\cos(\varphi_2)} \right)\\
 +       &= \arctan 2 \left(\frac{120~{\rm V}\cdot\sin(60°)}      {100~{\rm V}+120~V\cos(60°)} \right) 
 +\end{align*} 
  
-{{youtube>7UJi2GQCi00}} +</collapse> <button size="xs" type="link" collapse="Loesung_6_5_1_2_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_6_5_1_2_Endergebnis" collapsed="true">  
-{{youtube>NuAgmNaX58M}}+\begin{align*} 
 +U      &=190.79~{\rm V} \\ 
 +\varphi&=33° 
 +\end{align*}  
 + 
 +</collapse></WRAP></WRAP><WRAP indent>3. Is the resulting voltage the RMS value or the amplitude?  
 + 
 +<WRAP indent><button size="xs" type="link" collapse="Loesung_6_5_1_3_Solution">{{icon>eye}} Solution 3</button><collapse id="Loesung_6_5_1_3_Solution" collapsed="true">  
 +The resulting voltage is the RMS value. \\ \\ 
 + 
 +</collapse></WRAP></WRAP> \\ The source $2$ shall now be turned around (the previous plus pole is now the minus pole and vice versa). 
 + 
 +<WRAP indent> 4. Draw the phasor diagram for the two voltage phasors and the resulting phasor for the new circuit. 
 +<WRAP indent><button size="xs" type="link" collapse="Loesung_6_5_1_4_Solution">{{icon>eye}} Solution 4</button><collapse id="Loesung_6_5_1_4_Solution" collapsed="true">  
 +The phasor diagram looks roughly like this. \\  
 +But have a look at the solution for question 5! 
 +{{drawio>phasordiagram6514.svg}}  
 + 
 +</collapse></WRAP></WRAP><WRAP indent>5. Calculate the resulting voltage and phase. 
 + 
 +<WRAP indent><button size="xs" type="link" collapse="Loesung_6_5_1_5_Solution">{{icon>eye}} Solution 5</button><collapse id="Loesung_6_5_1_5_Solution" collapsed="true">  
 +By the law of cosine, we get:  
 +\begin{align*}  
 +U&= \sqrt{{{U_1  }^2}+{{U_1  }^2}-2{U_1       } \cdot{U_2  }\cdot \cos(180°- {\varphi_1})} 
 + &= \sqrt{{{100~V}^2}+{{120~V}^2}-2\cdot{100~V} \cdot{120~V}\cdot \cos(60°)}  
 +\end{align*}  
 +The angle is by the tangent of the relation of the imaginary part to the real part of the resulting voltage.  
 +\begin{align*}  
 +\varphi&= \arctan 2 \left(\frac{Im\{\underline{U}\}}                        {Re\{\underline{U}\}} \right)\\ 
 +       &= \arctan 2 \left(\frac{Im\{\underline{U}_1\}+Im\{\underline{U}_2\}}{Re\{\underline{U}_1\}+\{\underline{U}_2\}} \right)\\ 
 +       &= \arctan 2 \left(\frac{-{U}_2      \cdot\sin(\varphi_2)}{{U}_1      -{U}_2\cos(\varphi_2)} \right)\\ 
 +       &= \arctan 2 \left(\frac{-120~{\rm V}\cdot\sin(60°)      }{100~{\rm V}-120~V\cos(60°)} \right) \\ 
 +       &= \arctan 2 \left(\frac{-103.92...~{\rm V}              }{+40~{\rm V}} \right)  
 +\end{align*}  
 +The calculated (positive) horizontal and (negative) vertical dimension for the voltage indicates a phasor in the fourth quadrant. Does it seem right? \\ 
 +The phasor diagram which was shown in answer 4. cannot be correct. \\ 
 +With the correct lengths and angles, the real phasor diagram looks like this: 
 +{{drawio>phasordiagram6515.svg}} 
 +Here the phasor is in the fourth quadrant with a negative angle. \\ 
 + 
 +</collapse> <button size="xs" type="link" collapse="Loesung_6_5_1_5_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_6_5_1_5_Endergebnis" collapsed="true">  
 +\begin{align*} 
 +U      &=111.355~{\rm V}\\ 
 +\varphi&=-68.948° 
 +\end{align*}  
 +</collapse></WRAP> 
 +</WRAP> 
 + 
 +<callout icon="fa fa-exclamation" color="red" title="Notice:"> 
 +Be aware that some of the calculators only provide $\tan^{-1}$ or $\arctan$ and not $\arctan2$! \\ 
 +Therefore, you have always to check whether the solution lies in the correct quadrant. 
 +</callout> 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Exercise 6.5.2 oscilloscope plot"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +The following plot is visible on an oscilloscope (= plot tool for voltages and current). 
 +{{drawio>ExampleScope.svg}} 
 + 
 +  - What is the RMS value of the current and the voltage? What is the frequency $f$ and the phase $\varphi$? Does the component under test behave ohmic, capacitive, or inductive? 
 +  - How would the equivalent circuit look like, when it is built by two series components? 
 +  - Calculate the equivalent component values ($R$, $C$ or $L$) of the series circuit. 
 +  - How would the equivalent circuit look like, when it is built by two parallel components? 
 +  - Calculate the equivalent component values ($R$, $C$ or $L$)  of the parallel circuit. 
 +</WRAP></WRAP></panel> 
 + 
 + 
 +<panel type="info" title="Exercise 6.5.3 Series Circuit"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +The following circuit shall be given. \\ 
 +{{drawio>ExampleSeriesCircuit.svg}} 
 + 
 +This circuit is used with different component values, which are given in the following. \\ 
 +Calculate the RMS value of the missing voltage and the phase shift $\varphi$ between $U$ and $I$. 
 +<WRAP indent>1. $U_R = 10~\rm V$, $U_L = 10~\rm V$, $U_C = 20~\rm V$, $U=\rm ?$ 
 + 
 +<WRAP indent> 
 +<button size="xs" type="link" collapse="Loesung_6_5_3_1_Endergebnis">{{icon>eye}} Solution</button><collapse id="Loesung_6_5_3_1_Endergebnis" collapsed="true"> 
 +The drawing of the voltage pointers is as follows:{{drawio>SeriesPhasor.svg}} 
 +The voltage U is determined by the law of Pythagoras  
 +\begin{align*}  
 +U &= \sqrt{{{U_R     } ^2}+{({U_L       }-{U_C       }})^2} \\ 
 +  &= \sqrt{(10~{\rm V})^2+ {({10~{\rm V}}-{20~{\rm V}}})^2}  
 +\end{align*} 
 +The phase shift angle is calculated by simple geometry. 
 +\begin{align*} 
 +\tan(\varphi)&=\frac{{U_L       }-{U_C       }}{U_R}\\ 
 +             &=\frac{{10~{\rm V}}-{20~{\rm V}}}{10~{\rm V}} 
 +\end{align*} 
 +Considering that the angle is in the fourth quadrant we get: 
 +</collapse><button size="xs" type="link" collapse="Loesung_6_5_3_2_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_6_5_3_2_Endergebnis" collapsed="true"> 
 +\begin{equation*} 
 +U=\sqrt{2}\cdot 10~{\rm V} = 14.1~{\rm V} \qquad \varphi=-45° 
 +\end{equation*} 
 +</collapse> 
 +</WRAP> 
 + 
 +</WRAP><WRAP indent>2. $U_R = ?$, $U_L = 150~\rm V$, $U_C = 110~\rm V$, $U=50~\rm V$ 
 +<WRAP indent> 
 + 
 +<button size="xs" type="link" collapse="Loesung_6_5_3_3_Solution">{{icon>eye}} Solution 2</button><collapse id="Loesung_6_5_3_3_Solution" collapsed="true"> 
 +The drawing of the voltage pointers is as follows: {{drawio>SeriesPhasor2.svg}} 
 +The voltage $U_R$ is determined by the law of Pythagoras  
 +\begin{align*}  
 +U_R&=\sqrt{{U        ^2}+{({U_L}     -{U_C}}    )^2}\\ 
 +   &=\sqrt{(50~\rm V)^2 +{(150~\rm V -110~\rm V})^2}  
 +\end{align*} 
 +The phase shift angle is calculated by simple geometry. 
 +\begin{align*} 
 +\tan(\varphi)&=\frac{{U_L}      -{U_C}      }{U_R}\\ 
 +             &=\frac{{150~\rm V}-{110~\rm V}}{30~\rm V} 
 +\end{align*} 
 +Considering that the angle is in the fourth quadrant we get: 
 +</collapse> 
 + 
 +<button size="xs" type="link" collapse="Loesung_6_5_3_4_Endergebnis">{{icon>eye}} Final value</button><collapse id="Loesung_6_5_3_4_Endergebnis" collapsed="true"> 
 +\begin{equation*} 
 +U_R= 30~{\rm V}\qquad \varphi=53.13° 
 +\end{equation*} 
 +</collapse> 
 +</WRAP> 
 +</WRAP> 
 +</WRAP></WRAP></panel> 
 + 
 + 
 +<panel type="info" title="Exercise 6.5.4 Parallel Circuit"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +The following circuit shall be given.  
 +{{drawio>ExampleParallelCircuit.svg}} 
 + 
 +in the following, some of the numbers are given.  
 +Calculate the RMS value of the missing currents and the phase shift $\varphi$ between $U$ and $I$. 
 +  - $I_R = 3~\rm A$, $I_L = 1  ~\rm A$, $I_C = 5  ~\rm A$, $I=?$ 
 +  - $I_R = ?$,       $I_L = 1.2~\rm A$, $I_C = 0.4~\rm A$, $I=1~\rm A$ 
 +</WRAP></WRAP></panel> 
 + 
 + 
 +<panel type="info" title="Exercise 6.5.5 Complex Calculation I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +The following two currents with similar frequencies, but different phases have to be added. Use complex calculation! 
 +  * $i_1(t) = \sqrt{2} \cdot 2 ~A \cdot \cos (\omega t + 20°)$ 
 +  * $i_2(t) = \sqrt{2} \cdot 5 ~A \cdot \cos (\omega t + 110°)$ 
 + 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Exercise 6.5.6 Complex Calculation II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +Two complex impedances $\underline{Z}_1$ and $\underline{Z}_2$ are investigated.  
 +The resulting impedance for a series circuit is   $60~\Omega + \rm j \cdot 0 ~\Omega $.  
 +The resulting impedance for a parallel circuit is $25~\Omega + \rm j \cdot 0 ~\Omega $. 
 + 
 +What are the values for $\underline{Z}_1$ and $\underline{Z}_2$? 
 + 
 +#@HiddenBegin_HTML~656Sol,Solution~@# 
 +It's a good start to write down all definitions of the given values: 
 +  * the given values for the series circuit ($\square_\rm s$) and the parallel circuit ($\square_\rm p$) are: \begin{align*} R_\rm s = 60 ~\Omega , \quad X_\rm s = 0 ~\Omega \\ R_\rm p = 25 ~\Omega , \quad X_\rm p = 0 ~\Omega \\ \end{align*} 
 +  * the series circuit and the parallel circuit results into: \begin{align*}  R_{\rm s} = \underline{Z}_1 + \underline{Z}_2 \tag{1} \\ R_{\rm p} = \underline{Z}_1 || \underline{Z}_2  \tag{2} \\ \end{align*} 
 +  * the unknown values of the two impedances are: \begin{align*} \underline{Z}_1 = R_1 + {\rm j}\cdot X_1  \tag{3} \\ \underline{Z}_2 = R_2 + {\rm j}\cdot X_2 \tag{4} \\ \end{align*} 
 + 
 +Based on $(1)$,$(3)$ and $(4)$:  
 +\begin{align*} 
 +R_\rm s         &= \underline{Z}_1     &&+ \underline{Z}_2  \\ 
 +                &= R_1 + {\rm j}\cdot X_1    &&+ R_2 + {\rm j}\cdot X_2  \\  
 +\rightarrow 0   &= R_1 + R_2 - R_\rm s &&+ {\rm j}\cdot (X_1 + X_2)  \\  
 +\end{align*} 
 +Real value and imaginary value must be zero: 
 +\begin{align*} 
 +R_1 &= R_{\rm s} - R_2  \tag{5} \\ 
 +X_1 &= - X_2  \tag{6} 
 +\end{align*} 
 + 
 +Based on $(2)$ with $R_\rm s = \underline{Z}_1 + \underline{Z}_2$  $(1)$:  
 +\begin{align*} 
 +R_{\rm p}                  &= {{\underline{Z}_1 \cdot \underline{Z}_2}\over{\underline{Z}_1 + \underline{Z}_2}} \\ 
 +                           &= {{\underline{Z}_1 \cdot \underline{Z}_2}\over{R_\rm s}} \\ \\ 
 +R_{\rm p} \cdot R_{\rm s}  &  \underline{Z}_1 \cdot \underline{Z}_2 \\ 
 +                           &= (R_1 + {\rm j}\cdot X_1)\cdot (R_2 + {\rm j}\cdot X_2)     \\ 
 +                           &= R_1 R_2 + {\rm j}\cdot (R_1 X_2 + R_2 X_1) - X_1 X_2     \\ 
 +\end{align*} 
 + 
 +Substituting $R_1$ and $X_1$ based on $(5)$ and $(6)$: 
 +\begin{align*} 
 +R_{\rm p} \cdot R_{\rm s}  & (R_{\rm s} - R_2 )  R_2 + {\rm j}\cdot ((R_{\rm s} - R_2 )  X_2 - R_2 X_2) + X_2 X_2     \\ 
 +\rightarrow 0 & R_{\rm s} R_2 - R_2^2  + X_2^2 - R_{\rm p} \cdot R_{\rm s}  + {\rm j}\cdot ((R_{\rm s} - R_2 )  X_2 - R_2 X_2)      \\ 
 +\end{align*} 
 + 
 +Again real value and imaginary value must be zero: 
 +\begin{align*} 
 +0 & j\cdot ((R_{\rm s} - R_2 )  X_2 - R_2 X_2)     \\ 
 +  &          R_{\rm s}X_2 - 2 \cdot R_2 X_2        \\ 
 +\rightarrow    R_2 = {{1}\over{2}} R_{\rm s} \tag{7} \\ \\ 
 + 
 +0 &= R_{\rm s} R_2 - R_2^2  + X_2^2 - R_{\rm p} \cdot R_{\rm s}  \\ 
 +  &= R_{\rm s} ({{1}\over{2}} R_{\rm s}) - ({{1}\over{2}} R_{\rm s})^2  - X_2^2 - R_{\rm p} \cdot R_{\rm s}  \\ 
 +  &= {{1}\over{4}} R_{\rm s}^2 + X_2^2 - R_{\rm p} \cdot R_{\rm s}  \\ 
 +\rightarrow    X_2 = \pm \sqrt{R_{\rm p} \cdot R_{\rm s}  - {{1}\over{4}} R_{\rm s}^2 } \tag{8} \\ \\ 
 + 
 +\end{align*} 
 + 
 +The concluding result is: 
 +\begin{align*} 
 +(5)+(7): \quad R_1 &= {{1}\over{2}} R_{\rm s} \\ 
 +(7): \quad R_2 &= {{1}\over{2}} R_{\rm s} \\ 
 +(6)+(8)  \quad X_1 &= \mp \sqrt{R_{\rm p} \cdot R_{\rm s}  - {{1}\over{4}} R_{\rm s}^2 } \\ 
 +(8): \quad X_2 &= \pm \sqrt{R_{\rm p} \cdot R_{\rm s}  - {{1}\over{4}} R_{\rm s}^2 } 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~656Sol,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~656Res,Result~@# 
 +\begin{align*} 
 +R_1 &= 30~\Omega \\ 
 +R_2 &= 30~\Omega \\ 
 +X_1 &= \mp \sqrt{600}~\Omega \approx \mp 24.5~\Omega \\ 
 +X_2 &= \pm \sqrt{600}~\Omega \approx \pm 24.5~\Omega \\ 
 +\end{align*} 
 +#@HiddenEnd_HTML~656Res,Result~@# 
 + 
 +</WRAP></WRAP></panel> 
 + 
 + 
 +<panel type="info" title="Exercise 6.5.7 real Coils I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +A real coil has both ohmic and inductance behavior.  
 +At DC voltage the resistance is measured as $9 ~\Omega$.  
 +With an AC voltage of $5~\rm V$ at $50~\rm Hz$ a current of $0.5~\rm A$ is measured.  
 + 
 +What is the value of the inductance $L$? 
 +</WRAP></WRAP></panel> 
 + 
 + 
 +<panel type="info" title="Exercise 6.5.8 real Coils II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +A real coil has both ohmic and inductance behavior.  
 +This coil has at $100~\rm Hz$ an impedance of $1.5~\rm k\Omega$ and a resistance $1~\rm k\Omega$. 
 + 
 +What is the value of the reactance and inductance? 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Exercise 6.5.9  Capacitors and Resistance I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +An ideal capacitor is in series with a resistor $R=1~\rm k\Omega$.  
 +The capacitor shows a similar voltage drop to the resistor for $100~\rm Hz$.  
 + 
 +What is the value of the capacitance? 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Exercise 6.6.1 Impedance in Series Circuit of multiple Components I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +{{youtube>ZSDpIpnlTbY}} 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Exercise 6.6.2 Impedance in Series Circuit of multiple Components II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +{{youtube>LM2G3cunKp4?start=196}} 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Exercise 6.6.3 Impedance in Parallel Circuit of multiple Components I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +{{youtube>8MMzeeHNjIw}} 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Exercise 6.6.4 Impedance in Mixed Parallel and Series Circuit of multiple Components I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +{{youtube>u6lE4gIIfBw}} 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Exercise 6.6.5 Impedance in Mixed Parallel and Series Circuit of multiple Components II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +{{youtube>RPK0wkyLyMY?stop=705}} 
 +</WRAP></WRAP></panel> 
 + 
 +<panel type="info" title="Exercise 6.6.6 Impedance in Mixed Parallel and Series Circuit of multiple Components III"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
 +{{youtube>oueHAbLOSPA}} 
 +</WRAP></WRAP></panel>