Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Letzte Überarbeitung Beide Seiten der Revision
electrical_engineering_1:network_analysis [2023/11/23 03:02]
mexleadmin
electrical_engineering_1:network_analysis [2023/11/28 00:43]
mexleadmin
Zeile 412: Zeile 412:
 Questions: Questions:
  
-1. Find the relationship between $R_1$, $R_2$, and $R_3$ using superposition.+1. Find the relationship between $R_1$, $R_2$, and $R_3$ using superposition. \\ 
 +  * Determine suitable values for $R_1$, $R_2$, and $R_3$. 
 +  * What values for $R^0_1$, $R^0_2$, and $R^0_3$ from the [[https://de.wikipedia.org/wiki/E-Reihe|E24 series]] can be used to do this?
  
 #@HiddenBegin_HTML~1,Solution~@# #@HiddenBegin_HTML~1,Solution~@#
Zeile 531: Zeile 533:
 R_2 &= {{1}\over{5.09}}(R_3 + 15 {~\rm k\Omega}) = 11.8 {~\rm k\Omega}  R_2 &= {{1}\over{5.09}}(R_3 + 15 {~\rm k\Omega}) = 11.8 {~\rm k\Omega} 
 \end{align*} \end{align*}
 +
 +Based on the E24 series, the following values are next to the calculated ones:
 +\begin{align*}
 +R_3^0 &= 43 {~\rm k\Omega}\\
 +R_1^0 &= {{1}\over{3}}   (R_3 + 15 {~\rm k\Omega}) = 20 {~\rm k\Omega} \\
 +R_2^0 &= {{1}\over{5.09}}(R_3 + 15 {~\rm k\Omega}) = 12 {~\rm k\Omega} 
 +\end{align*}
 +
 #@HiddenEnd_HTML~Result1,Result~@# #@HiddenEnd_HTML~Result1,Result~@#
  
 +  * Find the relationship between $R_1$, $R_2$, and $R_3$ by investigating Kirchhoff's nodal rule for the node where $R_1$, $R_2$, and $R_3$ are interconnected.
 +
 +#@HiddenBegin_HTML~Solution2,Solution~@#
 +
 +The potential of the node is $U_\rm O$. Therefore the currents are:
 +  - the current $I_2$ over $R_2$ is flowing to ground: $I_2 = - {{U_\rm O}\over{R_2}} $ 
 +  - the current $I_1$ over $R_1$ is coming from the supply voltage $U_{\rm S}$ to the nodal voltage $U_{\rm O}$:  $I_1 = {{U_{\rm S} - U_{\rm O}}\over{R_1}}$
 +  - the current $I_4$ over $R_4$ is coming from the input voltage  $U_{\rm I}$ to the nodal voltage $U_{\rm O}$:  $I_4 = {{U_{\rm I} - U_{\rm O}}\over{R_4}}$
 +
 +This led to the formula based on the Kirchhoff's nodal rule: 
 +
 +\begin{align*}
 +\Sigma I = 0 &= I_1 + I_2 + I_3 \\
 +         0 &= {{U_{\rm S} - U_{\rm O}}\over{R_1}} + {{U_{\rm I} - U_{\rm O}}\over{R_4}} - {{U_\rm O}\over{R_2}} 
 +\end{align*}
 +
 +The formula can be rearranged, with all terms containing $ U_{\rm O}$ on the left side: 
 +\begin{align*}
 +    {{U_{\rm O}}\over{R_1}} + {{U_{\rm O}}\over{R_2}} + {{U_{\rm O}}\over{R_4}}         & {{U_{\rm S}}\over{R_1}}  + {{U_{\rm I}}\over{R_4}}  \\
 +      U_{\rm O}\cdot \left( {{1}\over{R_1}} + {{1}\over{R_2}} + {{1}\over{R_4}} \right) & {{U_{\rm S}}\over{R_1}}  + {{U_{\rm I}}\over{R_4}}  \\        
 +\end{align*}
 +
 +Both sides can be multiplied by $\cdot R_1$, $\cdot R_2$, $\cdot R_4$  - in order to get rid of the fractions : 
 +\begin{align*}
 +      U_{\rm O}\cdot \left( {{R_1 R_2 R_4 }\over{R_1}} + {{R_1 R_2 R_4 }\over{R_2}} + {{R_1 R_2 R_4 }\over{R_4}} \right) & R_1 R_2 R_4 \cdot {{U_{\rm S}}\over{R_1}}  + R_1 R_2 R_4 \cdot {{U_{\rm I}}\over{R_4}}  \\        
 +      U_{\rm O}\cdot \left( R_2 R_4 + R_1 R_4 + R_1 R_2 \right) & R_2 R_4 \cdot U_{\rm S}  + R_1 R_2 \cdot U_{\rm I} \\        
 +      U_{\rm O} &= {{R_2}\over{R_2 R_4 + R_1 R_4 + R_1 R_2 }}  \left( R_4 \cdot U_{\rm S}  + R_1 \cdot U_{\rm I} \right)\\        
 +\end{align*}
 +
 +The last formula was just the result we also got by the superposition but by more thinking. \\
 +So, sometimes there is an easier way... 
 +  * Unluckily, there is no simple way to know before, what way is the easiest.
 +  * Luckily, all ways lead to the correct result.
 +
 +#@HiddenEnd_HTML~Solution2,Solution ~@#
  
-  * Find the relationship between $R_1$, $R_2$, and $R_3$ using the star-delta transformation. 
   * What is the input resistance $R_{\rm in}(R_1, R_2, R_3)$ of the circuit (viewed from the sensor)?   * What is the input resistance $R_{\rm in}(R_1, R_2, R_3)$ of the circuit (viewed from the sensor)?
-  * What is the maximum allowed input resistance ($R_{\rm in}(R_1, R_2, R_3)$) for the sensor to still deliver current? + 
-  * Determine suitable values for $R_1$$R_2$, and $R_3$. +#@HiddenBegin_HTML~Solution3,Solution~@# 
-  What values for $R^0_1$$R^0_2$and $R^0_3$ from the [[https://de.wikipedia.org/wiki/E-Reihe|E24 series]] can be used to do this? + 
-  +\begin{align*} 
 +R_{\rm in}(R_1, R_2, R_3) &= R_3 + R_1 || R_2 \\ 
 +                          &= R_3 + {{R_1  R_2}\over{R_1 + R_2}} 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~Solution3,Solution~@# 
 + 
 +  * What is the minimum allowed input resistance ($R_{\rm in, min}(R_1, R_2, R_3)$) for the sensor to still deliver current? 
 + 
 +#@HiddenBegin_HTML~Solution4,Solution~@# 
 + 
 +\begin{align*
 +R_{\rm inmin} &= {{U_{\rm sense}}\over{I_{\rm sensemax}}} \\ 
 +                &= \rm {{15 V}\over{1 mA}} \\ 
 +                &= 15 k\Omega \\ 
 +\end{align*
 + 
 +#@HiddenEnd_HTML~Solution4,Solution~@# 
 #@TaskEnd_HTML@# #@TaskEnd_HTML@#