Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
electrical_engineering_1:task_70jjg4yzznocarsq_with_calculation [2023/03/29 18:01] – mexleadmin | electrical_engineering_1:task_70jjg4yzznocarsq_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1 | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | {{tag> | ||
- | |||
- | # | ||
- | |||
- | A thermistor is used as a temperature sensor in a refrigeration system. The thermistor has a resistance of $10 ~\rm{k}\Omega$ at $+25 ~°\rm{C}$. \\ | ||
- | Its temperature coefficients are: $\alpha=0.01 ~{{1}\over{\rm{K}}}$ and $\beta=71 \cdot 10^{-6}~{{1}\over{\rm{K}^2}}$ | ||
- | The temperature inside the refrigeration system can reach down to $-40 ~°\rm{C}$. | ||
- | |||
- | |||
- | 1. Calculate the resistance of the thermistor at $-40 ~°\rm{C}$. | ||
- | |||
- | # | ||
- | |||
- | \begin{align*} | ||
- | R &= R_0 \cdot (1 + \alpha \cdot \Delta T + \beta \cdot \Delta T^2) && | \text{with | ||
- | R &= 10 ~\rm{k}\Omega \cdot \left(1 + 0.01 ~{{1}\over{\rm{K}}} \cdot (-40~°\rm{C} - 25~°\rm{C} ) + 71 \cdot 10^{-6}~{{1}\over{\rm{K}^2}} \cdot (-40~°\rm{C} - 25~°\rm{C})^2 \right) \\ | ||
- | \end{align*} | ||
- | |||
- | # | ||
- | |||
- | # | ||
- | |||
- | \begin{align*} | ||
- | R &= 6.5 ~\rm{k}\Omega \\ | ||
- | \end{align*} | ||
- | |||
- | # | ||
- | |||
- | 2. Additionally, | ||
- | |||
- | # | ||
- | Resistors transfer electrical energy out of the circuit and generate heat. Therefore, a resistive sensor might heat up the refrigeration system. \\ \\ | ||
- | # | ||
- | |||
- | 3. Regarding question 2.: Given a constant sensor voltage, would a sensor with tenfold resistance be better or worse? Give an explanation for your answer. | ||
- | |||
- | # | ||
- | The power of the resistor $P = U \cdot I = R \cdot I^2 = {{U^2}\over{R}}$ is equivalent to the heat flow. \\ | ||
- | Therefore, with constant $U$ and increasing $R$ the power decreases. Ten times more resistance decreases the heat flow to one-tenth. | ||
- | # | ||
- | |||
- | # | ||