Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_1:task_pdkggtyexxy1ktu3_with_calculation [2023/02/12 05:51] mexleadminelectrical_engineering_1:task_pdkggtyexxy1ktu3_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1
Zeile 1: Zeile 1:
-{{tag>complex_impedance exam_ee1_WS2022}} 
- 
-<panel type="info" > <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
-<fs x-large>**Exercise ~~#~~ : Impedances at Frequencies ** \\ (written test, approx. 18% of a 60-minute written test, WS2022) \\ \\ </fs> 
- 
-Calculate the **resistor values** which have to be used the following circuits. 
- 
-1. A resistor $R_1$ shall have the same absolute value of the impedance like a capacitor $C_1=40 nF$ at $f_1=4 MHz$. 
- 
-<button size="xs" type="link" collapse="pdkggtyexxy1ktu3_1_path">{{icon>eye}} Solution</button><collapse id="pdkggtyexxy1ktu3_1_path" collapsed="true"> 
-<panel> 
-\begin{align*} 
-R_1 &= |\underline{X}_{C1}| \\ 
-    &= {{1}\over{2\pi \cdot f \cdot C_1}} \\ 
-    &= {{1}\over{2\pi \cdot 4 MHz \cdot 40 nF}} \\     
-\end{align*} 
-</panel></collapse> 
- 
-<button size="xs" type="link" collapse="pdkggtyexxy1ktu3_1_solution">{{icon>eye}} Final result</button><collapse id="pdkggtyexxy1ktu3_1_solution" collapsed="true"><panel> 
-\begin{align*} 
- R_1  &= 1.00 \Omega \\ 
-\end{align*}</panel> 
- \\ 
-</collapse> 
- 
-2. A $RL$ series circuit with $L_2=4.7 \mu H$, where an AC voltage source of $U_2=1.0 V$ with $f_2=450 kHz$ generates a current $I_2=60 mA$. 
- 
-<button size="xs" type="link" collapse="pdkggtyexxy1ktu3_2_path">{{icon>eye}} Solution</button><collapse id="pdkggtyexxy1ktu3_2_path" collapsed="true"> 
-<panel> 
-Series circuit means that the current is constant on every component. \\ 
-The equivalent impedance for $R$ and $L$ combined is given by 
-\begin{align*} 
-{{\underline{U}}\over{\underline{I}}} &= R_2 + \underline{X}_{L2} \\ 
-                                      &= R_2 + j \cdot \omega L  
-\end{align*} 
-Since $j \cdot \omega L $ is perpendicular to $R_2$ this can be simplified to: 
-\begin{align*} 
-\left| {{\underline{U}}\over{\underline{I}}} \right|^2 &= |R_2|^2 + |\underline{X}_{L2}|^2 \\ 
-\left( {{U}\over{I}} \right)^2 &= {R_2}^2 + {X_{L2}}^2 \\ 
-\end{align*} 
- 
-This can be rearranged to get $R_2$: 
-\begin{align*} 
-R_2 &= \sqrt{ \left( {{U }\over{I   }} \right)^2 - X_{L2}^2 } \\ 
-    &= \sqrt{ \left( {{1V}\over{60mA}} \right)^2 - (2\pi \cdot 450kHz \cdot 4.7 \mu H)^2 } \\ 
-\end{align*} 
- 
-</panel></collapse> 
- 
-<button size="xs" type="link" collapse="pdkggtyexxy1ktu3_2_solution">{{icon>eye}} Final result</button><collapse id="pdkggtyexxy1ktu3_2_solution" collapsed="true"><panel> 
-\begin{align*} 
- R_2  &= 10.0 \Omega \\ 
-\end{align*}</panel> 
- \\ 
-</collapse> 
- 
-3. A $RC$ parallel circuit with $C_3=4.7 nF$ on an AC current source ($I_{3S}=1.3 A$,$f_3=200 kHz$), which generates a current of $I_{3R}=1.0 A$ through $R_3$. 
- 
-<button size="xs" type="link" collapse="pdkggtyexxy1ktu3_3_path">{{icon>eye}} Solution</button><collapse id="pdkggtyexxy1ktu3_3_path" collapsed="true"> 
-<panel> 
-Parallel circuit means that the voltage is the same on $R_3$ and $C_3$: \\ 
-\begin{align*} 
- \underline{U}_3 = R_3 \cdot \underline{I}_{3R} = -j\cdot {X}_{3C} \cdot \underline{I}_{3C}  
-\end{align*} 
-So it gets clear, that $\underline{I}_{3R}$ is perpendicular to $\underline{I}_{3C}$ (It has to, since $R_3$ is perpendicular to  $-j\cdot {X}_{3C}$, too). \\ 
-Therefore, the resulting current of the parallel circuit is given as: 
-\begin{align*} 
- \underline{I}_{3}     & \underline{I}_{3R}    +  \underline{I}_{3C} \\ 
- |\underline{I}_{3}|^2 &= |\underline{I}_{3R}|^2 + |\underline{I}_{3C}|^2 \\ 
-  {I}_{3C}    &= \sqrt{|{I}_{3}|^2 - |{I}_{3R}|^2} 
-\end{align*} 
- 
-Back on the first formula:  
-\begin{align*} 
-R_3 \cdot {I}_{3R} &= {X}_{3C} \cdot {I}_{3C} \\ 
-R_3  & {X}_{3C} \cdot {{{I}_{3C}}\over{{I}_{3R}}} \\ 
-     & {{1}\over{2\pi \cdot f \cdot C_3}} \cdot {{\sqrt{|{I}_{3}|^2 - |{I}_{3R}|^2}}\over{{I}_{3R}}} \\ 
-\end{align*} 
- 
-</panel> 
-</collapse> 
- 
-<button size="xs" type="link" collapse="pdkggtyexxy1ktu3_3_solution">{{icon>eye}} Final result</button><collapse id="pdkggtyexxy1ktu3_3_solution" collapsed="true"><panel> 
-\begin{align*} 
- R_3  &= 70.0 \Omega \\ 
-\end{align*}</panel> 
- \\ 
-</collapse> 
- 
-</WRAP></WRAP></panel>