Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_1:task_tb6pi8dgh0m2e2pw_with_calculation [2023/02/12 01:52] – angelegt mexleadmin | electrical_engineering_1:task_tb6pi8dgh0m2e2pw_with_calculation [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1 | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| - | {{tag> | ||
| - | |||
| - | <panel type=" | ||
| - | <fs x-large> | ||
| - | |||
| - | The circuit shown in the following is used to control the brightness when turning on a small light bulb. | ||
| - | |||
| - | {{drawio> | ||
| - | |||
| - | The circuit contains a voltage source $U=12 V$, a switch $S_1$, a resistor of $R_1=20 \Omega$ and a capacitor of $C=100 \mu F$. \\ | ||
| - | The switch $S_2$ to an additional consumer $R_2$ will be considered to be open for the first tasks. At the moment $t_0=0 s$ the switch $S_1$ is closed, the voltage across the capacitor is $u_c (t_0 )=0 V$. | ||
| - | |||
| - | 1. First do not consider the light bulb – it is not connected to the RC-circuit. \\ | ||
| - | Calculate the point of time $t_1$ when $u_c (t_1 )=0.5\cdot U$. | ||
| - | |||
| - | |||
| - | <button size=" | ||
| - | {{drawio> | ||
| - | The following formula describes the time course of $u_C(t)$ | ||
| - | \begin{align*} | ||
| - | u_c (t) = U \cdot (1- e^{t_1/ | ||
| - | \end{align*} | ||
| - | The resulting circuit can again be transformed: | ||
| - | {{drawio> | ||
| - | Here, the $U_{24}$ is calculated by $I_{24}$ as the following: | ||
| - | \begin{align*} | ||
| - | U_{24} &= R_{135} \cdot I_{24} \\ | ||
| - |        & | ||
| - | \end{align*} | ||
| - | |||
| - | On the right side of the last circuit there is a voltage divider given by $R_{135}$, $R_6$ and $R_7$. \\ | ||
| - | Therefore the voltage between $A$ and $B$ is given as: | ||
| - | \begin{align*} | ||
| - | U_{AB} &= U_{24} \cdot {{R_7}\over{R_6 + R_7 + R_1||R_3||R_5}} \\ | ||
| - |        & | ||
| - | \end{align*} | ||
| - | |||
| - | For the internal resistance $R_i$ the ideal voltage source is substituted by its resistance ($=0\Omega$, | ||
| - | \begin{align*} | ||
| - | R_{AB} &= R_7 || ( R_6 + R_1||R_3||R_5) \\ | ||
| - | \end{align*} | ||
| - | |||
| - | with $R_1||R_3||R_5 = 5 \Omega || 10 \Omega || 10 \Omega = 5 \Omega || 5 \Omega = 2.5 \Omega$: | ||
| - | |||
| - | \begin{align*} | ||
| - | U_{AB} &= ({{6.0 V}\over{5.0 \Omega}} - 4.2 \Omega) \cdot {{15 \Omega \cdot 2.5 \Omega}\over{7.5 \Omega + 15 \Omega + 2.5 \Omega}} \\ | ||
| - | R_{AB} &= 15 \Omega|| ( 7.5 \Omega + 2.5 \Omega) \\ | ||
| - | \end{align*} | ||
| - | </ | ||
| - | |||
| - | <button size=" | ||
| - | \begin{align*} | ||
| - | U_{AB} &= 4.5 V\\ | ||
| - | R_{AB} &= 6 \Omega \\ | ||
| - | |||
| - | \end{align*} | ||
| - | \\ | ||
| - | </ | ||
| - | |||
| - | 2. Calculate the overall energy dissipated by $R_1$ while charging the capacitor $0 V$ to $12 V$. | ||
| - | |||
| - | |||
| - | 3. Now, consider the light bulb as a resistor of $R_B=20 \Omega$, and ignore again the left side ($S_2$ is open).  | ||
| - | The voltage across the capacitor is again $0 V$ at the moment $t_0=0 s$ when the switch $S_1$ is closed.  | ||
| - | Calculate the voltage $u_c (t_2 )$ across the capacitor at $t_2=1 ms$ after closing the switch. \\ | ||
| - | Hint: To solve this, first create an equivalent linear voltage source from $U$, $R_1$ and $R_B$. | ||
| - | |||
| - | |||
| - | 4. Explain (without calculation) how the situation in 3. would change once also $S_2$ is closed from the beginning on. | ||
| - | |||
| - | |||
| - | |||
| - | </ | ||