Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:inductances_in_circuits [2023/03/17 12:52]
mexleadmin
electrical_engineering_2:inductances_in_circuits [2023/10/03 19:13] (aktuell)
mexleadmin
Zeile 1: Zeile 1:
-====== 6Inductances in Circuits ======+====== 6 Inductances in Circuits ======
  
 ===== 6.1 Basic Circuits ===== ===== 6.1 Basic Circuits =====
Zeile 7: Zeile 7:
 ==== 6.1.1 Series Circuits ==== ==== 6.1.1 Series Circuits ====
  
-Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff's mesh law ($i=const$) the series circuit of inductions can be interpreted as a single current $i$ which generates multiple linked fluxes $\Psi$. Since the current must stay constant in the series circuit, the following applies for the equivalent inductor of a series connection of single ones:+Based on $L = {{ \Psi(t)}\over{i}}$ and Kirchhoff's mesh law ($i=\rm const$) the series circuit of inductions can be interpreted as a single current $i$ which generates multiple linked fluxes $\Psi$. Since the current must stay constant in the series circuit, the following applies for the equivalent inductor of a series connection of single ones:
  
-\begin{align*} L_{eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*}+\begin{align*} L_{\rm eq} &= {{\sum_i \Psi_i}\over{I}} = \sum_i L_i \end{align*}
  
 A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$): A similar result can be derived from the induced voltage $u_{ind}= L {{{\rm d}i}\over{{\rm d}t}}$, when taking the situation of a series circuit (i.e. $i_1 = i_2 = i_1 = ... = i_{\rm eq}$ and $u_{\rm eq}= u_1 + u_2 + ...$):
Zeile 22: Zeile 22:
 ==== 6.1.2 Parallel Circuits ==== ==== 6.1.2 Parallel Circuits ====
  
-For parallel circuits one can also start with the principles based on Kirchhoff's mesh law:+For parallel circuitsone can also start with the principles based on Kirchhoff's mesh law:
  
 \begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*} \begin{align*} u_{\rm eq}= u_1 = u_2 = ... \\ \end{align*}
Zeile 34: Zeile 34:
 \begin{align*}  \begin{align*} 
      u_{\rm ind}          &= L {{{\rm d}i}\over{{\rm d}t}} \quad \quad \quad \quad \bigg| \int(){\rm d}t \\       u_{\rm ind}          &= L {{{\rm d}i}\over{{\rm d}t}} \quad \quad \quad \quad \bigg| \int(){\rm d}t \\ 
-\int u_{\rm ind} {\rm d}t &= L \cdot \\ +\int u_{\rm ind} {\rm d}t &= L \cdot \\ 
                         i &= {{1}\over{L}} \cdot \int u_{\rm ind} {\rm d}t \\                          i &= {{1}\over{L}} \cdot \int u_{\rm ind} {\rm d}t \\ 
 \end{align*} \end{align*}
Zeile 51: Zeile 51:
 ==== 6.1.3 in AC Circuits ==== ==== 6.1.3 in AC Circuits ====
  
-For AC circuits (i.e. with sinusoidal signals) the impedance $Z$ based on the real part $R$ and imaginary part $X$ has to be considered. In order to do so, one has to solve:+For AC circuits (i.e. with sinusoidal signals) the impedance $Z$ based on the real part $R$ and imaginary part $X$ has to be considered. To do so, one has to solve:
  
 \begin{align*} \underline{Z} = {{\underline{u}}\over{\underline{i}}} = {{1}\over{\underline{i}}} \cdot \underline{u}  \end{align*} \begin{align*} \underline{Z} = {{\underline{u}}\over{\underline{i}}} = {{1}\over{\underline{i}}} \cdot \underline{u}  \end{align*}
Zeile 61: Zeile 61:
 \end{align*} \end{align*}
  
-Without limiting the generality, one can assume the current $i$ to be: $i = I \cdot \sqrt{2} \cdot e^{j \cdot \omega t + \varphi_0}$.\\+Without limiting the generality, one can assume the current $i$ to be: $i = I \cdot \sqrt{2} \cdot {\rm e}^{{\rm j\cdot \omega t + \varphi_0}$.\\
 Once inserted, the formula gets: Once inserted, the formula gets:
  
 \begin{align*}  \begin{align*} 
-\underline{Z} &= {{1} \over {I \cdot \sqrt{2} \cdot e^{j \cdot \omega t + \varphi_0}}} \cdot L {{ {\rm d}} \over {{\rm d}t} } \left( I \cdot \sqrt{2} \cdot e^{j \cdot \omega t + \varphi_0} \right)  \\  +\underline{Z} &= {{1} \over {I \cdot \sqrt{2} \cdot {\rm e}^{{\rm j\cdot \omega t + \varphi_0}}} \cdot L {{ {\rm d}} \over {{\rm d}t} } \left( I \cdot \sqrt{2} \cdot {\rm e}^{{\rm j\cdot \omega t + \varphi_0} \right)  \\  
-              &= {{1} \over {I \cdot \sqrt{2} \cdot e^{j \cdot \omega t + \varphi_0}}} \cdot L                                       I \cdot \sqrt{2} \cdot {{ {\rm d}} \over {{\rm d}t} } \left( e^{j \cdot \omega t + \varphi_0} \right)  \\  +              &= {{1} \over {I \cdot \sqrt{2} \cdot {\rm e}^{{\rm j\cdot \omega t + \varphi_0}}} \cdot L                                       I \cdot \sqrt{2} \cdot {{ {\rm d}} \over {{\rm d}t} } \left( {\rm e}^{{\rm j\cdot \omega t + \varphi_0} \right)  \\  
-              &= {{1} \over {\qquad\quad\; e^{j \cdot \omega t + \varphi_0}}} \cdot L                                       \qquad\; \cdot {{ {\rm d}} \over {{\rm d}t} } \left( e^{j \cdot \omega t + \varphi_0} \right)  \\  +              &= {{1} \over {\qquad\quad\; {\rm e}^{{\rm j\cdot \omega t + \varphi_0}}} \cdot L                                       \qquad\; \cdot {{ {\rm d}} \over {{\rm d}t} } \left( {\rm e}^{{\rm j\cdot \omega t + \varphi_0} \right)  \\  
-              &= {{1} \over {\qquad\quad\; e^{j \cdot \omega t + \varphi_0}}} \cdot L                                       \qquad\; \cdot j\omega \cdot e^{j \cdot \omega t + \varphi_0}   \\ \\ +              &= {{1} \over {\qquad\quad\; {\rm e}^{{\rm j\cdot \omega t + \varphi_0}}} \cdot L                                       \qquad\; \cdot j\omega \cdot {\rm e}^{{\rm j\cdot \omega t + \varphi_0}   \\ \\ 
-\underline{Z} &= L \cdot j\omega  \\ +\underline{Z} &= L \cdot {\rm j}\omega  \\ 
 \end{align*} \end{align*}
  
Zeile 82: Zeile 82:
 ===== 6.3 Resonance Phenomena ===== ===== 6.3 Resonance Phenomena =====
  
-Similar to the approach last semester we now focus on circuits with inductors $L$. For preparation, please recap the chapter [[:electrical_engineering_1:circuits_under_different_frequencies|Circuits under different Frequencies]] from last semester.+Similar to last semester's approach, we now focus on circuits with inductors $L$. For preparation, please recap the chapter [[:electrical_engineering_1:circuits_under_different_frequencies|Circuits under different Frequencies]] from last semester.
  
 ==== 6.3.1 RLC - Series Resonant Circuit ==== ==== 6.3.1 RLC - Series Resonant Circuit ====
Zeile 99: Zeile 99:
  
 \begin{align*}  \begin{align*} 
-\underline{U}_I        &       R \cdot \underline{I} + j \omega L \cdot \underline{I} +         \frac {1}{j\omega C }        \cdot \underline{I} \\  +\underline{U}_I        &       R \cdot \underline{I} + {\rm j\omega L \cdot \underline{I} +               \frac {1}{j\omega C }         \cdot \underline{I} \\  
-\underline{U}_I        &= \left( R                     + j \omega L                     - j \cdot \frac {1}{ \omega C } \right) \cdot \underline{I} \\  +\underline{U}_I        &= \left( R                     {\rm j\omega L                     {\rm j\cdot \frac {1}{ \omega C } \right) \cdot \underline{I} \\  
-\underline{Z}_{\rm eq} &       R                     + j \omega L                     - j \cdot \frac {1}{ \omega C } +\underline{Z}_{\rm eq} &       R                     {\rm j\omega L                     {\rm j\cdot \frac {1}{ \omega C } 
 \end{align*} \end{align*}
  
Zeile 118: Zeile 118:
 \begin{align*}  \begin{align*} 
 \varphi_u = \varphi_Z  \varphi_u = \varphi_Z 
-         &= arctan \frac{\omega L - \frac{1}{\omega C}}{R} +         &\arctan \frac{\omega L - \frac{1}{\omega C}}{R} 
 \end{align*} \end{align*}
  
Zeile 143: Zeile 143:
 |voltage $U_C$ \\ at the capacitor |  |  $\boldsymbol{\LARGE{U}}$ \\ because $\frac{1}{\omega C}$ becomes very large  |  |  $\boldsymbol{\frac{1}{\omega_0 C} \cdot I = \frac{1}{\omega_0 C} \cdot \frac{U}{R} = \color{blue}{\frac{1}{R}\sqrt{\frac{L}{C}}\cdot U}}$  |  |  $\boldsymbol{\small{0}}$ \\ because $\frac{1}{\omega C}$ becomes very small  | |voltage $U_C$ \\ at the capacitor |  |  $\boldsymbol{\LARGE{U}}$ \\ because $\frac{1}{\omega C}$ becomes very large  |  |  $\boldsymbol{\frac{1}{\omega_0 C} \cdot I = \frac{1}{\omega_0 C} \cdot \frac{U}{R} = \color{blue}{\frac{1}{R}\sqrt{\frac{L}{C}}\cdot U}}$  |  |  $\boldsymbol{\small{0}}$ \\ because $\frac{1}{\omega C}$ becomes very small  |
  
-The calculation in the table shows that in the resonance case, the voltage across the capacitor or inductor deviates from the input voltage by a factor $\color{blue}{\frac{1}{R}\sqrt{\frac{L}{C}}}$. This quantity is called **quality or Q-factor**  $Q_S$: +The calculation in the table shows that in the resonance case, the voltage across the capacitor or inductor deviates from the input voltage by a factor $\color{blue}{\frac{1}{R}\sqrt{\frac{L}{C}}}$. This quantity is called **quality or Q-factor**  $Q_{\rm S}$: 
  
 \begin{align*}  \begin{align*} 
-\boxed{ Q_S = \left.\frac{U_C}{U} \right\vert_{\omega = \omega_0}  +\boxed{ Q_{\rm S} = \left.\frac{U_C}{U} \right\vert_{\omega = \omega_0}  
-            = \left.\frac{U_L}{U} \right\vert_{\omega = \omega_0}  +                  = \left.\frac{U_L}{U} \right\vert_{\omega = \omega_0}  
-            = \color{blue}{\frac{1}{R}\sqrt{\frac{L}{C}}} } +                  = \color{blue}{\frac{1}{R}\sqrt{\frac{L}{C}}} } 
 \end{align*} \end{align*}
  
-The quality can be greater than, less than, or equal to 1. The quality $Q$ does not have a unit and should not be confused with the charge $Q$.+The quality can be greater than, less than, or equal to 1. The quality $Q_{\rm S}$ does not have a unit and should not be confused with the charge $Q$.
  
   * If the quality is very high, the overshoot of the voltages at the impedances becomes very large in the resonance case. This is useful and necessary in various applications, e.g. in an $RLC$ element as an antenna.   * If the quality is very high, the overshoot of the voltages at the impedances becomes very large in the resonance case. This is useful and necessary in various applications, e.g. in an $RLC$ element as an antenna.
Zeile 158: Zeile 158:
 The reciprocal of the $Q$ is called **attenuation**  $d_{\rm S}$. This is specified when using the circuit as a non-overshooting filter. The reciprocal of the $Q$ is called **attenuation**  $d_{\rm S}$. This is specified when using the circuit as a non-overshooting filter.
  
-\begin{align*} \boxed{ d_{\rm S} = \frac{1}{Q_S} = R \sqrt{\frac{C}{L}} } \end{align*}+\begin{align*} \boxed{ d_{\rm S} = \frac{1}{Q_{\rm S}} = R \sqrt{\frac{C}{L}} } \end{align*}
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 216: Zeile 216:
 <panel type="info" title="Exercise 6.3.1 Series Resonant Circuit I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 6.3.1 Series Resonant Circuit I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-A $R$-$L$-$C$ series circuit uses a capacity of $C=1 ~\rm µF$. The circuit is fed by a voltage source with $U_I$ at $f_1 = 50~\rm Hz$.+A $R$-$L$-$C$ series circuit uses a capacity of $C=1 ~\rm µF$. voltage source with $U_I$ feeds the circuit at $f_1 = 50~\rm Hz$.
  
   - Which values does $R$ and $L$ need to have, when the resonance voltage $|\underline{U}_L|$ and $|\underline{U}_C|$ at $f_1$ shall show the double value of the input voltage $U_I$?   - Which values does $R$ and $L$ need to have, when the resonance voltage $|\underline{U}_L|$ and $|\underline{U}_C|$ at $f_1$ shall show the double value of the input voltage $U_I$?
Zeile 225: Zeile 225:
 <panel type="info" title="Exercise 6.3.2 Series Resonant Circuit II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 6.3.2 Series Resonant Circuit II"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-A given $R$-$L$-$C$ series circuit is fed with a frequency, which is $20~\%$ larger than the resonance frequency keeping the amplitude of the input voltage constant. In this situation, the circuit shows a current that is $30~\%$ lower than the maximum current value.+A given $R$-$L$-$C$ series circuit is fed with a frequency, $20~\%$ larger than the resonance frequency keeping the amplitude of the input voltage constant. In this situation, the circuit shows a current that is $30~\%$ lower than the maximum current value.
  
   - Calculate the Quality $Q = {{1}\over{R}}\sqrt{{{L}\over{C}}}$.   - Calculate the Quality $Q = {{1}\over{R}}\sqrt{{{L}\over{C}}}$.