Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Nächste Überarbeitung Beide Seiten der Revision
electrical_engineering_2:magnetic_circuits [2023/05/22 10:55]
ott [magnetic Energy of a magnetic Circuit]
electrical_engineering_2:magnetic_circuits [2024/05/10 16:02]
mexleadmin [5.3 Mutual Induction and Coupling]
Zeile 1: Zeile 1:
-====== 5Magnetic Circuits ======+====== 5 Magnetic Circuits ======
  
 <callout> For this and the following chapter the online Book 'DC Electrical Circuit Analysis - A Practical Approach' is strongly recommended as a reference. In detail this is chapter [[https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electronics/DC_Electrical_Circuit_Analysis_-_A_Practical_Approach_(Fiore)/10%3A_Magnetic_Circuits_and_Transformers/10.3%3A_Magnetic_Circuits|10.3 Magnetic Circuits]] </callout> <callout> For this and the following chapter the online Book 'DC Electrical Circuit Analysis - A Practical Approach' is strongly recommended as a reference. In detail this is chapter [[https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electronics/DC_Electrical_Circuit_Analysis_-_A_Practical_Approach_(Fiore)/10%3A_Magnetic_Circuits_and_Transformers/10.3%3A_Magnetic_Circuits|10.3 Magnetic Circuits]] </callout>
Zeile 308: Zeile 308:
 ===== 5.3 Mutual Induction and Coupling ===== ===== 5.3 Mutual Induction and Coupling =====
  
-Situation: Two coils $1$ and $2$ near each other\\ Questions:+Imagine charging your phone wirelessly by simply placing it on a charging pad.  
 +This seamless experience is made possible by the fascinating phenomenon of mutual induction and coupling between two coils
 + 
 +This situation is depicted in <imgref ImgNr09>:  
 +When an alternating current flows through one coil (Coil $1$), it creates a time-varying magnetic field that induces a voltage in the nearby coil (Coil $2$), even though they are not physically connected.  
 +This mutual influence is governed by the principle of electromagnetic induction. 
 + 
 +<WRAP center 35%> <imgcaption ImgNr09 | Mutual Induction of two Coils> </imgcaption> {{drawio>MutualInductionTwoCoils1.svg}} </WRAP> 
 + 
 +The key factor determining the strength of mutual induction is the mutual inductance ($M$) between the coils.  
 +It quantifies the magnetic flux linkage and depends on factors like the number of turns, current, and relative orientation of the coils. 
 + 
 +While geometric properties play a role, the fundamental principle can be described using electric properties alone, making mutual induction a versatile concept with numerous applications, including: 
 + 
 +  * Wireless power transfer 
 +  * Transformers 
 +  * Inductive coupling in communication systems 
 +  * Inductive sensors 
 + 
 +As we explore this chapter, we'll delve into the mathematical models, equations, and practical considerations of mutual induction and coupling, unlocking a world of innovative technologies that shape our modern lives. 
 +We explicitly try to answer the following questions:
  
   * Which effect do the coils have on each other?   * Which effect do the coils have on each other?
   * Can we describe the effects with mainly electric properties (i.e. no geometric properties)   * Can we describe the effects with mainly electric properties (i.e. no geometric properties)
  
-<WRAP center 35%> <imgcaption ImgNr09 | Mutual Induction of two Coils> </imgcaption> {{drawio>MutualInductionTwoCoils1.svg}} </WRAP> 
  
 ==== Effect of Coils on each other ==== ==== Effect of Coils on each other ====
Zeile 405: Zeile 424:
 $k_{21}$ describes how much of the flux from coil $1$ is acting on coil $2$ (similar for $k_{12}$): $k_{21}$ describes how much of the flux from coil $1$ is acting on coil $2$ (similar for $k_{12}$):
  
-\begin{align*} k_{21} = {{\Phi_{21}}\over{\Phi_{11}}} \\ \end{align*}+\begin{align*} k_{21} = \pm {{\Phi_{21}}\over{\Phi_{11}}} \\ \end{align*}
  
-When $k_{21}=100~\%$, there is no flux in the middle leg but only in the second coil. \\ +The sign of $k_{21}$ depends on the direction of $\Phi_{21}$ relative to $\Phi_{22}$! If the directions are the same, the positive sign applies, if the directions are oposite, the minus sign applies. 
 + 
 +When $k_{21}=+100~\%$, there is no flux in the middle leg but only in the second coil and in the same direction as the flux that originates from second coil. \\  
 +When $k_{21}=-100~\%$, there is no flux in the middle leg but only in the second coil and in opposite direction as the flux that originates from the second coil. \\ 
 For  $k_{21}=0~\%$ all the flux is in the middle leg circumventing the second coil, i.e. there is no coupling. For  $k_{21}=0~\%$ all the flux is in the middle leg circumventing the second coil, i.e. there is no coupling.
  
Zeile 421: Zeile 443:
        &= k_{21}                  \cdot {{N_1 \cdot N_2 }\over {R_{\rm m1}}} \\         &= k_{21}                  \cdot {{N_1 \cdot N_2 }\over {R_{\rm m1}}} \\ 
 \end{align*} \end{align*}
 +
 +Note, that also $M_{21}$ and $M_{12}$ can be either positiv or negative, depending on the sign of the coupling coefficients.
  
 The formula is finally:  The formula is finally: 
Zeile 485: Zeile 509:
   * the mutual inductances are equal: $M_{12} = M_{21} = M$   * the mutual inductances are equal: $M_{12} = M_{21} = M$
   * the mutual inductance $M$ is:     $M = \sqrt{M_{12}\cdot M_{21}} = k \cdot \sqrt {L_{11}\cdot L_{22}}$   * the mutual inductance $M$ is:     $M = \sqrt{M_{12}\cdot M_{21}} = k \cdot \sqrt {L_{11}\cdot L_{22}}$
-  * The resulting *total coupling* $k$ is given as \begin{align*} k = \sqrt{k_{12}\cdot k_{21}} \end{align*}+  * The resulting **total coupling** $k$ is given as \begin{align*} k = \rm{sgn}(k_{12}) \sqrt{k_{12}\cdot k_{21}} \end{align*}
  
 ==== Effects in the electric Circuits ==== ==== Effects in the electric Circuits ====
Zeile 511: Zeile 535:
 <imgcaption ImgNr12 | Example Circuits with positive Polarity> </imgcaption> {{drawio>posCoupling.svg}} <imgcaption ImgNr12 | Example Circuits with positive Polarity> </imgcaption> {{drawio>posCoupling.svg}}
  
-In this case, the **mutual induction added positively**.+In this case, the **mutual induction is positiv $(M>0)$**.
  
 The formula of the shown circuitry is then:  The formula of the shown circuitry is then: 
Zeile 525: Zeile 549:
 <WRAP> <imgcaption ImgNr13 | Example Circuits with negative Polarity> </imgcaption> {{drawio>negCoupling.svg}} </WRAP> <WRAP> <imgcaption ImgNr13 | Example Circuits with negative Polarity> </imgcaption> {{drawio>negCoupling.svg}} </WRAP>
  
-In this case, the **mutual induction added negatively**.+In this case, the **mutual induction is negativ $(M<0)$***.
  
 The formula of the shown circuitry is then:  The formula of the shown circuitry is then: 
 \begin{align*}  \begin{align*} 
-u_1 &= R_1 \cdot i_1 &+ L_{11} \cdot {{{\rm d}i_1}\over{{\rm d}t}} &M \cdot {{{\rm d}i_2}\over{{\rm d}t}} & \\  +u_1 &= R_1 \cdot i_1 &+ L_{11} \cdot {{{\rm d}i_1}\over{{\rm d}t}} & M \cdot {{{\rm d}i_2}\over{{\rm d}t}} & \\  
-u_2 &= R_2 \cdot i_2 &+ L_{22} \cdot {{{\rm d}i_2}\over{{\rm d}t}} &M \cdot {{{\rm d}i_1}\over{{\rm d}t}} & \\ +u_2 &= R_2 \cdot i_2 &+ L_{22} \cdot {{{\rm d}i_2}\over{{\rm d}t}} & M \cdot {{{\rm d}i_1}\over{{\rm d}t}} & \\ 
 \end{align*} \end{align*}
  
Zeile 612: Zeile 636:
 \end{align*} \end{align*}
  
-==== magnetic Energy of a magnetic Circuit ====+ 
 + 
  
 ==== magnetic Energy of a magnetic Circuit ==== ==== magnetic Energy of a magnetic Circuit ====
  
-With this formula also the stored energy in a magnetic circuit can be calculated. For this, the formula be rewritten by the properties linked flux $\Psi = N \cdot \Phi = L \c= {{1}\over{2}}{{\Psi^2 }\over{L}}} dot I$ and magnetic voltage $\theta=N \cdot I = \Phi \cdot R_{\rm m}$ of the magnetic circuit: \begin{align*} \boxed{W_{\rm m} = {{1}\over{2}} \Psi\cdot I = {{1}\over{2}}{{\Phi^2 }\over{N^2 \dot L}}} = {{1}\over{2}}{{\theta^2 }\over{R_m^2 \dot N^2 \dot L}}}  = {{1}\over{2}}{{\theta^2 }\over{R_m}}}  \end{align*}+With this formula also the stored energy in a magnetic circuit can be calculated. For this, the formula be rewritten by the properties linked flux $\Psi = N \cdot \Phi = L \cdot I$ and magnetic voltage $\theta=N \cdot I = \Phi \cdot R_{\rm m}$ of the magnetic circuit: \begin{align*} \boxed{W_{\rm m} = {{1}\over{2}} \Psi \cdot I = {{1}\over{2}} {{\Psi^2}\over{L}}= {{1}\over{2}}{{\Phi^2 }\over{N^2 \cdot L}} = {{1}\over{2}} \Phi^2 \cdot R_{\rm m} = {{1}\over{2}}{{\theta^2 }\over{R_{\rm m}}}} \end{align*}
  
 ==== magnetic Energy of a toroid Coil ==== ==== magnetic Energy of a toroid Coil ====