Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:polyphase_networks [2023/03/19 12:44]
mexleadmin
electrical_engineering_2:polyphase_networks [2023/09/19 23:52]
mexleadmin
Zeile 1: Zeile 1:
-====== 7Polyphase Networks and Power in AC Circuits ======+====== 7 Polyphase Networks and Power in AC Circuits ======
  
 emphasizing the importance of power considerations emphasizing the importance of power considerations
Zeile 5: Zeile 5:
   * three-phase four-wire systems   * three-phase four-wire systems
  
-=== 7.0 Recap of complex two-terminal networks ===+===== 7.0 Recap of complex two-terminal networks =====
  
 In the last semester, AC current, AC voltage, and their effects have been considered on a circuit that had simply included an AC voltage source. \\ These circuits can be now understood as. In the last semester, AC current, AC voltage, and their effects have been considered on a circuit that had simply included an AC voltage source. \\ These circuits can be now understood as.
Zeile 23: Zeile 23:
 Thus, the induced voltage $u(t)$ is given by:  Thus, the induced voltage $u(t)$ is given by: 
 \begin{align*}  \begin{align*} 
-u(t) &               \frac{{\rm d}                  \Psi}            {{\rm d}t} \\  +u(t) &              -\frac{{\rm d}                  \Psi}            {{\rm d}t} \\  
-     &= N  \cdot       \frac{{\rm d}                  \Phi}            {{\rm d}t} \\  +     &-N  \cdot       \frac{{\rm d}                  \Phi}            {{\rm d}t} \\  
-     &= NBA\cdot       \frac{{\rm d}       \cos \varphi(t)}            {{\rm d}t} \\  +     &-NBA\cdot       \frac{{\rm d}       \cos \varphi(t)}            {{\rm d}t} \\  
-     &= \hat{\Psi}\cdot\frac{{\rm {\rm d}} \cos (\omega t + \varphi_0)}{{\rm d}t} \\  +     &-\hat{\Psi}\cdot\frac{{\rm {\rm d}} \cos (\omega t + \varphi_0)}{{\rm d}t} \\  
-     &-\omega \hat{\Psi}           \cdot \sin (\omega t + \varphi_0) \\  +     &= \omega \hat{\Psi}           \cdot \sin (\omega t + \varphi_0) \\  
-     &-\hat{U}                     \cdot \sin (\omega t + \varphi_0) \\ +     &= \hat{U}                     \cdot \sin (\omega t + \varphi_0) \\ 
 \end{align*} \end{align*}
  
Zeile 34: Zeile 34:
 Out of the last formula we derived the following instantaneous voltage $u(t)$  Out of the last formula we derived the following instantaneous voltage $u(t)$ 
 \begin{align*}  \begin{align*} 
-u(t) &-\hat{U}  \cdot \sin (\omega t + \varphi_0) \\  +u(t) &= \hat{U}  \cdot \sin (\omega t + \varphi_0) \\  
-     & \hat{U}  \cdot \sin (\omega t + \varphi'_0) \\  +     &= \sqrt{2} U\cdot \sin (\omega t + \varphi_0) \\ 
-     &= \sqrt{2} U\cdot \sin (\omega t + \varphi'_0) \\ +
 \end{align*} \end{align*}
  
Zeile 145: Zeile 144:
  
   - Ohmic load: The instantaneous voltage is in phase with the instantaneous current. The instantaneous power is always non-negative. The average power is $P=U^2/R = {{1}\over{2}} \hat{U}^2/R= {{1}\over{2}}(6V)^2/1 ~\rm k\Omega = 18 ~\rm mW$   - Ohmic load: The instantaneous voltage is in phase with the instantaneous current. The instantaneous power is always non-negative. The average power is $P=U^2/R = {{1}\over{2}} \hat{U}^2/R= {{1}\over{2}}(6V)^2/1 ~\rm k\Omega = 18 ~\rm mW$
-  - Inductive load: The voltage is ahead of the current. The phase angle is $+90°$ (which also reflects the $+j$ in the inductive impedance $+j\omega L$). The instantaneous is half positive, half negative; the average power is zero (in the simulation not completely visible). +  - Inductive load: The voltage is ahead of the current. The phase angle is $+90°$ (which also reflects the $+{\rm j}$ in the inductive impedance $+{\rm j}\omega L$). The instantaneous is half positive, half negative; the average power is zero (in the simulation not completely visible). 
-  - Capacitive load: The voltage is lagging the current. The phase angle is $-90°$ (which also reflects the $-j$ in the capacitive impedance ${{1}\over{j\omega C}}$). The instantaneous is again half positive, half negative; the average power is zero (in the simulation not completely visible).+  - Capacitive load: The voltage is lagging the current. The phase angle is $-90°$ (which also reflects the $-{\rm j}$ in the capacitive impedance ${{1}\over{{\rm j}\omega C}}$). The instantaneous is again half positive, half negative; the average power is zero (in the simulation not completely visible).
  
 <WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3EZjAZhWALADgwVhZAGyFYBMhKIuEuIGluApgLTIBQATiK2KSKRkjdkfMAHZCUcPDYZSQ5qVyTxk1oSGqphDGwDuwjf0HDexoZH11s5ugE5JAi7PkgUuUROtZwXoTqsbJzc+YMsDFE9JGy1w8AwMWzA7UJNLOSEYr0xE2JAAgHMQ20j+ZSlLABtwFN8VWrCoWDBcOxbuGDhcBIwxMWwxVDbCZChZSEpS0vkfHKksAH0wBcgFgA8sMEhxBdwV2CIlBdYF0lPjloXFlH24G9ZdQUm+achZhPmlhbF1gEMCMCEW4IYHbC5fTpgLCDQh2OHUN52MRYRaQi6PCbcJSSUrMBzxRKaCHrTbbH57TqHPYnM5nVh7ZY3Sn3TDjSiKcq4-FzInLH5rX5bQG7fbLE7LTrI3gU5oXFBstwoHF8aiiD6ZYkbIXk4GEI4086sH4YBZMg4ssQKtDKqhmHl0L78wXbIEysXLZYysHqFyTFBiEB2WgYPWB2jyX2KgP4kN8fERuR+sPgXA+IP8dKkJN2XKpwOJBNZrHdZOsUh2ZOF9lKRI54Tl-MZtgANyxYlSClI7bqUggW3g+SkrGguDEkDEDkihAn2AckhguDYRUU3eCK9C5WcBnXPY5Kj8Vj3th3YSXiscJmtZXnYwiSp77iit7cHhK99P28Bmi8PCfcWST5zLEgRZNE3IHgAxvY+5gReQiiCObRMMwPikNAWB2JAHjyAkIxvGg3CEGw8gBjuWhkbUiQAKorMR47FFopQAXQIA0ZYJHng+97MdRtFrMWPh4sI1CESxULgNAAA6ADOAD2AAWAC2ACWEEyZUsm-AAJmw-HoNwswjNwwbgKhUnScpAB2WkAK4QQALspzaMOpmk6Xp+koXQY7GWJPgoOZEG-AADr8EHKY5zmudpbCyeA8UBhsAKME08CIAc2xSJQMACO4eD+vQ-RYHqoaQvMIABjl9DdPg-QFcV5B8GVmQVU0uU1QV9UlU1zRjCgqGUAAYhAlCYXAKYDqwICDRwjAAI42YwlkQQAnmwQA noborder}} </WRAP> <WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3EZjAZhWALADgwVhZAGyFYBMhKIuEuIGluApgLTIBQATiK2KSKRkjdkfMAHZCUcPDYZSQ5qVyTxk1oSGqphDGwDuwjf0HDexoZH11s5ugE5JAi7PkgUuUROtZwXoTqsbJzc+YMsDFE9JGy1w8AwMWzA7UJNLOSEYr0xE2JAAgHMQ20j+ZSlLABtwFN8VWrCoWDBcOxbuGDhcBIwxMWwxVDbCZChZSEpS0vkfHKksAH0wBcgFgA8sMEhxBdwV2CIlBdYF0lPjloXFlH24G9ZdQUm+achZhPmlhbF1gEMCMCEW4IYHbC5fTpgLCDQh2OHUN52MRYRaQi6PCbcJSSUrMBzxRKaCHrTbbH57TqHPYnM5nVh7ZY3Sn3TDjSiKcq4-FzInLH5rX5bQG7fbLE7LTrI3gU5oXFBstwoHF8aiiD6ZYkbIXk4GEI4086sH4YBZMg4ssQKtDKqhmHl0L78wXbIEysXLZYysHqFyTFBiEB2WgYPWB2jyX2KgP4kN8fERuR+sPgXA+IP8dKkJN2XKpwOJBNZrHdZOsUh2ZOF9lKRI54Tl-MZtgANyxYlSClI7bqUggW3g+SkrGguDEkDEDkihAn2AckhguDYRUU3eCK9C5WcBnXPY5Kj8Vj3th3YSXiscJmtZXnYwiSp77iit7cHhK99P28Bmi8PCfcWST5zLEgRZNE3IHgAxvY+5gReQiiCObRMMwPikNAWB2JAHjyAkIxvGg3CEGw8gBjuWhkbUiQAKorMR47FFopQAXQIA0ZYJHng+97MdRtFrMWPh4sI1CESxULgNAAA6ADOAD2AAWAC2ACWEEyZUsm-AAJmw-HoNwswjNwwbgKhUnScpAB2WkAK4QQALspzaMOpmk6Xp+koXQY7GWJPgoOZEG-AADr8EHKY5zmudpbCyeA8UBhsAKME08CIAc2xSJQMACO4eD+vQ-RYHqoaQvMIABjl9DdPg-QFcV5B8GVmQVU0uU1QV9UlU1zRjCgqGUAAYhAlCYXAKYDqwICDRwjAAI42YwlkQQAnmwQA noborder}} </WRAP>
Zeile 208: Zeile 207:
  
 \begin{align*}  \begin{align*} 
-\underline{S} &= S         \cdot e^{j\varphi} \\  +\underline{S} &= S         \cdot {\rm e}^{{\rm j}\varphi} \\  
-              &= U \cdot I \cdot e^{j\varphi} +              &= U \cdot I \cdot {\rm e}^{{\rm j}\varphi} 
 \end{align*} \end{align*}
  
Zeile 215: Zeile 214:
  
 \begin{align*}  \begin{align*} 
-\underline{S} &                                                  \cdot             I \cdot e^{j(\varphi_U - \varphi_I)} \\  +\underline{S} &                                                              \cdot             I \cdot {\rm e}^{ {\rm j}(\varphi_U - \varphi_I)} \\  
-              &= \underbrace{U \cdot e^{j\varphi_U}}_{\underline{U}} \cdot \underbrace{I \cdot e^{-j\varphi_I}}_{\underline{I}^*} +              &= \underbrace{U \cdot {\rm e}^{{\rm j}\varphi_U}}_{\underline{U}} \cdot \underbrace{I \cdot {\rm e}^{-{\rm j}\varphi_I}}_{\underline{I}^*} 
 \end{align*} \end{align*}
  
Zeile 223: Zeile 222:
 <callout icon="fa fa-exclamation" color="red" title="Notice:"> The apparent power $\underline{S} $ is given by: <callout icon="fa fa-exclamation" color="red" title="Notice:"> The apparent power $\underline{S} $ is given by:
  
-  * $\underline{S} = UI \cdot e^{j\varphi}$ +  * $\underline{S} = UI \cdot {\rm e}^{{\rm j}\varphi}$ 
-  * $\underline{S} = UI \cdot (\cos\varphi + j \sin\varphi)$ +  * $\underline{S} = UI \cdot (\cos\varphi + {\rm j\sin\varphi)$ 
-  * $\underline{S} = P + jQ$+  * $\underline{S} = P + {\rm j}Q$
   * $\underline{S} = \underline{U} \cdot \underline{I}^*$   * $\underline{S} = \underline{U} \cdot \underline{I}^*$
  
Zeile 320: Zeile 319:
 Various general technical terms in the polyphase system (in German: Mehrphasensystem) will now be briefly discussed. Various general technical terms in the polyphase system (in German: Mehrphasensystem) will now be briefly discussed.
  
-  - A **$m$-phase system**  describes a circuit in which $m$ sinusoidal voltages transport the power. The general term for these systems is polyphase systems. \\ The voltages are generated by a homogenous magnetic field containing $m$ rotating windings, which are arranged with a fixed offset to each other (see <imgref imageNo04>). The induced voltages exhibit the same frequency $f$. \\ <WRAP><imgcaption imageNo04 | Visible Representations of a m-phase System></imgcaption>{{drawio>technicalTermispolySys1.svg}}</WRAP> +  - A **$m$-phase system**  describes a circuit in which $m$ sinusoidal voltages transport the power. The general term for these systems is polyphase systems. <WRAP> 
-  - An $m$-phase system is **symmetrical**  when the voltages of the individual windings exhibit the same amplitude and are offset at the same angle to each other ($\varphi = 2\pi/m$). \\ Thus, the voltage phasors $\underline{U}_1 ... \underline{U}_m$ form a symmetrical star. \\ Example: A 3-phase system is symmetrical for $\varphi = 360°/3 = 120°$ between the voltages of the windings: $\underline{U}_1 = \sqrt{2} \cdot U \cdot e ^{j(\omega t + 0°)}$, $\underline{U}_2 = \sqrt{2} \cdot U \cdot e ^{j(\omega t - 120°)}$, $\underline{U}_3 = \sqrt{2} \cdot U \cdot e ^{j(\omega t - 240°)}$ \\ <WRAP><imgcaption imageNo05 | Visible Representations of the a symmetric and asymmetric System></imgcaption>{{drawio>technicalTermispolySys2.svg}}</WRAP>+The voltages are generated by a homogenous magnetic field containing $m$ rotating windings, which are arranged with a fixed offset to each other (see <imgref imageNo04>). The induced voltages exhibit the same frequency $f$. \\  
 +<WRAP><imgcaption imageNo04 | Visible Representations of a m-phase System></imgcaption>{{drawio>technicalTermispolySys1.svg}}</WRAP> 
 +</WRAP> 
 +  - An $m$-phase system is **symmetrical**  when the voltages of the individual windings exhibit the same amplitude and are offset at the same angle to each other ($\varphi = 2\pi/m$). <WRAP> 
 +Thus, the voltage phasors $\underline{U}_1 ... \underline{U}_m$ form a symmetrical star. \\  
 +Example: A 3-phase system is symmetrical for $\varphi = 360°/3 = 120°$ between the voltages of the windings:  
 +$\underline{U}_1 = \sqrt{2} \cdot U \cdot {\rm e^{{\rm j}(\omega t + 0°)}$,  
 +$\underline{U}_2 = \sqrt{2} \cdot U \cdot {\rm e^{{\rm j}(\omega t - 120°)}$,  
 +$\underline{U}_3 = \sqrt{2} \cdot U \cdot {\rm e^{{\rm j}(\omega t - 240°)}$ \\  
 +<WRAP><imgcaption imageNo05 | Visible Representations of the a symmetric and asymmetric System></imgcaption>{{drawio>technicalTermispolySys2.svg}}</WRAP> 
 +</WRAP>
   - The windings can be concatenated (=linked) in different ways. The most important ways of **concatenation** are:   - The windings can be concatenated (=linked) in different ways. The most important ways of **concatenation** are:
       - All windings are independently connected to a load. This phase system is called **non-interlinked**  (in German: //nicht verkettet//).       - All windings are independently connected to a load. This phase system is called **non-interlinked**  (in German: //nicht verkettet//).
-      - All windings are connected to each other, then the phase system is called **interlinked**. \\  \\ <WRAP outdent>With interlinking, fewer wires are needed. Star or ring circuits can be used for daisy chaining. \\ The two simulations in <imgref pic20> show a non-interlinked and an interlinked circuit with generator and load in star shape.</WRAP> <WRAP><imgcaption pic20|Comparison of non-interlinked and interlinked circuits></imgcaption> \\ <collapse id="openAni1" collapsed="true"><well> To show the simulations: click on ''Edit''  >> ''Center Circuit''<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsKBTAWjDACgA3EbFcGmkExp5uvKhErUqKWMTrEEYSCmzFsYBfRgJOIPNPzhCVHlXEUqSS9BUJieLAjsF7xKNB1d9fAWGOiocAspcFgaDA0MJ1ZiQjsMQndPALQRIRFTQIlLQJpoMDwHYmVIcLxCVUgrD11Y8ASQFBpxBvNJK0DtXT96xJYUETBWoPbA7HyaMDsiBGwEPDI1JLYAJ25CDN5+Qf4s+FXaOtSKBszxfbXtxsNsDdEzZDgDmjqwXYRTsUfIZ55exsK-3OTzWcUSQ0Sil4EL2TwAHuACIIwCgtm9kRpaI0BAA7AD2OKYAEscQAXBgrAA2JIA1gwACYAHQAzgBhIkrADGAFciaS2AB3QTCe7CjJ4AQ-IXpbgS9biyWC+WygS3TZmJV-Y5-ZoaoU6uC0EW6qBKq4mq7HKVGExoG20P7W7yTRIvV09a0fV1-L2ip0GETOj1mo6GN20YNCvxUOi8X2x03SkV-GWRsVGZVptUZ7OOzXQ3aOxMBGMivVGnYCK7l7xvATeFiJf3I111RvF8N1w59NPRgJ9ph5qP+Qdxhqj4u+ie+ocZmE9bPW-qDccojIIMRK5fcDcA9eboUDfd7oFKhd3BOLs1-bMJmHW14NNtlpVNFqJN+CQiKoVQ-5-mVrTBf5gKYb9i1A8DPzAn8KBRdNnxEH4EWwDBeCYBwQEIO0MKrbEQAAGTxABDJlmQACgAZVJYiVhZVkCRxBhOVJIkCQASjYBEhCQDDyBQD5BDlAQmhAABxBgmJWYjSTxOiKOo2j6MY5jWI4tggA noborder}}+      - All windings are connected to each other, then the phase system is called **interlinked**. <WRAP>\\  \\ <WRAP outdent> 
 +With interlinking, fewer wires are needed. Star or ring circuits can be used for daisy chaining. \\  
 +The two simulations in <imgref pic20> show a non-interlinked and an interlinked circuit with generator and load in star shape.</WRAP> <WRAP><imgcaption pic20|Comparison of non-interlinked and interlinked circuits></imgcaption> \\  
 +<collapse id="openAni1" collapsed="true"><well> To show the simulations: click on ''Edit''  >> ''Center Circuit''<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsKBTAWjDACgA3EbFcGmkExp5uvKhErUqKWMTrEEYSCmzFsYBfRgJOIPNPzhCVHlXEUqSS9BUJieLAjsF7xKNB1d9fAWGOiocAspcFgaDA0MJ1ZiQjsMQndPALQRIRFTQIlLQJpoMDwHYmVIcLxCVUgrD11Y8ASQFBpxBvNJK0DtXT96xJYUETBWoPbA7HyaMDsiBGwEPDI1JLYAJ25CDN5+Qf4s+FXaOtSKBszxfbXtxsNsDdEzZDgDmjqwXYRTsUfIZ55exsK-3OTzWcUSQ0Sil4EL2TwAHuACIIwCgtm9kRpaI0BAA7AD2OKYAEscQAXBgrAA2JIA1gwACYAHQAzgBhIkrADGAFciaS2AB3QTCe7CjJ4AQ-IXpbgS9biyWC+WygS3TZmJV-Y5-ZoaoU6uC0EW6qBKq4mq7HKVGExoG20P7W7yTRIvV09a0fV1-L2ip0GETOj1mo6GN20YNCvxUOi8X2x03SkV-GWRsVGZVptUZ7OOzXQ3aOxMBGMivVGnYCK7l7xvATeFiJf3I111RvF8N1w59NPRgJ9ph5qP+Qdxhqj4u+ie+ocZmE9bPW-qDccojIIMRK5fcDcA9eboUDfd7oFKhd3BOLs1-bMJmHW14NNtlpVNFqJN+CQiKoVQ-5-mVrTBf5gKYb9i1A8DPzAn8KBRdNnxEH4EWwDBeCYBwQEIO0MKrbEQAAGTxABDJlmQACgAZVJYiVhZVkCRxBhOVJIkCQASjYBEhCQDDyBQD5BDlAQmhAABxBgmJWYjSTxOiKOo2j6MY5jWI4tggA noborder}}
  
-</WRAP> <WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsKBTAWjDACgA3EYw8DXsL0I0o4ClSRUUsYnWIIwkFNmLYw8+jASduA-n14o8eURErUJ0ZQmJ4sCGwVvEo0bVx4Gvw0+IvhYGgx1DAdWHht9LR1PMH1BECMTKjMJURpoMGMMYiVIILxCFUhJNxi9QxoUqLFzSVFojwqQJhoTON4Uv3rsTJowGyIEbAQ8MlVXbQAnWjgQHzbqzuQ4NhnFrwRCKWNTeDXaPCXZneSVyAONjopt+ZEU-fWjr2xsZofVmcIUEWurmsUqwA7okql4flQ2lA2CCIYd5j94RcQd8RFDUV5kTcqD4tlRsChoSC8SACS9CVjrmTrj5KUJfgJOjDwIyTiyiWyElUcfdmdcki98hyqUKSbhecTbuLsYldljubKTAqCVR5XMVeyNXTSWh2QKsa12vpDaS3hyTa9eJbTUyQdb7WbrhcZupCShEW8TO77udmf8rYQvYisbF4sQ3cG2AAPFqjFpumi-WigkAAcQYADsGFMAIYAFwA9lMADoAZwAFABlPM5kulgDCBYzWYAxnmAJZNgCU0dJNnj80g5AgIkRABkCzmACZlqs1uuN5sMNudjM9mPKKhMLa0MAibf0UcidsZvPZgA2J4A1gwZw321MWwBXdt5thAA noborder}} </WRAP> </well></collapse> <collapse id="openAni1" collapsed="false"> <button type="warning" collapse="openAni1">To view the simulations: click here!</button> </collapse></WRAP> +</WRAP> <WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l3BWcMBMcUHYMGZIA4UA2ATmIxAUgpABZsKBTAWjDACgA3EYw8DXsL0I0o4ClSRUUsYnWIIwkFNmLYw8+jASduA-n14o8eURErUJ0ZQmJ4sCGwVvEo0bVx4Gvw0+IvhYGgx1DAdWHht9LR1PMH1BECMTKjMJURpoMGMMYiVIILxCFUhJNxi9QxoUqLFzSVFojwqQJhoTON4Uv3rsTJowGyIEbAQ8MlVXbQAnWjgQHzbqzuQ4NhnFrwRCKWNTeDXaPCXZneSVyAONjopt+ZEU-fWjr2xsZofVmcIUEWurmsUqwA7okql4flQ2lA2CCIYd5j94RcQd8RFDUV5kTcqD4tlRsChoSC8SACS9CVjrmTrj5KUJfgJOjDwIyTiyiWyElUcfdmdcki98hyqUKSbhecTbuLsYldljubKTAqCVR5XMVeyNXTSWh2QKsa12vpDaS3hyTa9eJbTUyQdb7WbrhcZupCShEW8TO77udmf8rYQvYisbF4sQ3cG2AAPFqjFpumi-WigkAAcQYADsGFMAIYAFwA9lMADoAZwAFABlPM5kulgDCBYzWYAxnmAJZNgCU0dJNnj80g5AgIkRABkCzmACZlqs1uuN5sMNudjM9mPKKhMLa0MAibf0UcidsZvPZgA2J4A1gwZw321MWwBXdt5thAA noborder}} </WRAP> </well></collapse> <collapse id="openAni1" collapsed="false"> <button type="warning" collapse="openAni1">To view the simulations: click here!</button> </collapse></WRAP></WRAP>
- +
-  - The instantaneous power $p_i(t)$ of a winding $i$ is variable in time. For the instantaneous power $p(t)$ of the $m$-phase system one has to consider all single instantaneous powers of the windings. When this instantaneous power $p(t)$ does not change with time, the polyphase system is called **balanced**. \\ If a balanced load is used, then polyphase systems are balanced with $m\geq3$. \\  \\ For $m\geq3$ and symmetrical load, the following is obtained for the instantaneous power: \\  \\ $\quad \quad p = m \cdot U \cdot I \cdot \cos\varphi = P$ \\ <WRAP><imgcaption imageNo06 | Visible Representations of a balanced System></imgcaption>{{drawio>technicalTermispolySys3.svg}}</WRAP>+
  
 +  - The instantaneous power $p_i(t)$ of a winding $i$ is variable in time. For the instantaneous power $p(t)$ of the $m$-phase system one has to consider all single instantaneous powers of the windings. When this instantaneous power $p(t)$ does not change with time, the polyphase system is called **balanced**. <WRAP>
 +If a balanced load is used, then polyphase systems are balanced with $m\geq3$. \\  \\ 
 +For $m\geq3$ and symmetrical load, the following is obtained for the instantaneous power: \\  \\ 
 +$\quad \quad p = m \cdot U \cdot I \cdot \cos\varphi = P$ \\ 
 +<WRAP><imgcaption imageNo06 | Visible Representations of a balanced System></imgcaption>{{drawio>technicalTermispolySys3.svg}}</WRAP>
 +</WRAP>
  
 The following simulation shows the power in the different phases of a symmetrical and balanced system. The instantaneous power of each phase is a non-negative sinusoidal function shifted by $0°$, $120°$, and $240°$. The following simulation shows the power in the different phases of a symmetrical and balanced system. The instantaneous power of each phase is a non-negative sinusoidal function shifted by $0°$, $120°$, and $240°$.
Zeile 345: Zeile 361:
  
 ==== 7.2.2 Three-Phase System ==== ==== 7.2.2 Three-Phase System ====
 +
 +See also: [[https://de.mathworks.com/videos/series/what-is-3-phase-power.html|MATHWORKS Onramp Video: What is 3-phase power?]]
  
 The most commonly used polyphase system is the three-phase system. The three-phase system has advantages over a DC system or single-phase AC system: The most commonly used polyphase system is the three-phase system. The three-phase system has advantages over a DC system or single-phase AC system:
Zeile 365: Zeile 383:
 === Three-phase generator === === Three-phase generator ===
  
-  * The windings of a three-phase generator are called $\rm U$, $\rm V$, $\rm W$; the winding connections are correspondingly called: $\rm U1$, $\rm U2$, $\rm V1$, $\rm V2$, $\rm W1$, $\rm W2$ (see <imgref imageNo10>). \\ <WRAP> <imgcaption imageNo10 | Motor Terminal></imgcaption> {{drawio>Motorterminal.svg}} </WRAP> +  * The windings of a three-phase generator are called $\rm U$, $\rm V$, $\rm W$; the winding connections are correspondingly called: $\rm U1$, $\rm U2$, $\rm V1$, $\rm V2$, $\rm W1$, $\rm W2$ (see <imgref imageNo10>). \\ <WRAP>  
-  * The typical **winding connections**  in a three-phase generator are called **Delta connection** (for ring connection) and **Wye connection** (for star connection). This winding connection can simply be changed by reconnecting the motor terminal. In <imgref imageNo11> the two types of winding connections are shown. For the Wye connection, is often the star configuration shown, and for the Delta connection the ring configuration. For the Wye connection, it is also possible to have the star point on a separate terminal. \\ <WRAP> <imgcaption imageNo11 | Motor Terminal Setup for the two Connections></imgcaption> {{drawio>MotorterminalConnections.svg}} </WRAP> +<imgcaption imageNo10 | Motor Terminal></imgcaption> {{drawio>Motorterminal.svg}} </WRAP> 
-  * The **phase voltages**  are given by: \\ \begin{align*} \color{RoyalBlue}{u_{\rm U}} &\color{RoyalBlue}{= \sqrt{2} U \cdot \cos(\omega t + \alpha - 0)} \\ \color{Green}{u_{\rm V}} & \color{Green}{= \sqrt{2} U \cdot \cos(\omega t + \alpha - {{2}\over{3}}\pi)} \\ \color{DarkOrchid}{u_{\rm W}} & \color{DarkOrchid}{= \sqrt{2} U \cdot \cos(\omega t + \alpha - {{4}\over{3}}\pi)} \\ \color{RoyalBlue}{u_{\rm U}} + \color{Green}{u_{\rm V}} + \color{DarkOrchid}{u_{\rm W}} & = 0 \end{align*}+  * The typical **winding connections**  in a three-phase generator are called **Delta connection** (for ring connection) and **Wye connection** (for star connection). This winding connection can simply be changed by reconnecting the motor terminal. In <imgref imageNo11> the two types of winding connections are shown. For the Wye connection, is often the star configuration shown, and for the Delta connection the ring configuration. For the Wye connection, it is also possible to have the star point on a separate terminal. <WRAP>  
 +<imgcaption imageNo11 | Motor Terminal Setup for the two Connections></imgcaption> {{drawio>MotorterminalConnections.svg}} </WRAP> 
 +  * The **phase voltages**  are given by: <WRAP>  
 +\begin{align*}  
 +\color{RoyalBlue }{u_{\rm U}} & \color{RoyalBlue }{= \sqrt{2} U \cdot \cos(\omega t + \alpha - 0               )} \\  
 +\color{Green     }{u_{\rm V}} & \color{Green     }{= \sqrt{2} U \cdot \cos(\omega t + \alpha - {{2}\over{3}}\pi)} \\  
 +\color{DarkOrchid}{u_{\rm W}} & \color{DarkOrchid}{= \sqrt{2} U \cdot \cos(\omega t + \alpha - {{4}\over{3}}\pi)} \\  
 +\color{RoyalBlue }{u_{\rm U}} + \color{Green}{u_{\rm V}} + \color{DarkOrchid}{u_{\rm W}} & = 0 \end{align*}</WRAP>
   * The **direction of rotation**  is given by the arrangement of the windings:   * The **direction of rotation**  is given by the arrangement of the windings:
       * The three-phase generator with clockwise direction (CW, mathematically negative orientation) shows the phase sequence: $u_{\rm U}$, $u_{\rm V}$, $u_{\rm W}$, Therefore, $u_{\rm V}$ is $120°$ lagging to $u_{\rm U}$. \\ This is the common setup for generators.       * The three-phase generator with clockwise direction (CW, mathematically negative orientation) shows the phase sequence: $u_{\rm U}$, $u_{\rm V}$, $u_{\rm W}$, Therefore, $u_{\rm V}$ is $120°$ lagging to $u_{\rm U}$. \\ This is the common setup for generators.
Zeile 377: Zeile 402:
 The lines connected to the generator / load terminals $\rm U1$, $\rm V1$, $\rm W1$ are often called $\rm L1$, $\rm L2$, $\rm L3$ ($\rm L$ for **L**ine or **L**ive = active) outside of the generator or load. \\ It is important to distinguish between the different types of voltages and currents, which depend on the point of view (either onto a three-phase generator/load or the external conductors). The lines connected to the generator / load terminals $\rm U1$, $\rm V1$, $\rm W1$ are often called $\rm L1$, $\rm L2$, $\rm L3$ ($\rm L$ for **L**ine or **L**ive = active) outside of the generator or load. \\ It is important to distinguish between the different types of voltages and currents, which depend on the point of view (either onto a three-phase generator/load or the external conductors).
  
-  * **String voltages/currents**  $U_\rm S$, $I_\rm S$ (alternatively: winding voltages/currents, in German: //Strangspannungen/Strangströme//): \\ The string voltages/currents are the values measured on the windings - independent on the winding connection. \\ These voltages are shown in the previous images as $u_\rm U$, $u_\rm V$, $u_\rm W$. +  * **String voltages/currents**  $U_\rm S$, $I_\rm S$ (alternatively: winding voltages/currents, in German: //Strangspannungen/Strangströme//): <WRAP> 
-  * **Phase voltages/currents**  $U_\rm L$, $I_\rm L$ (alternatively: phase-to-phase voltages/currents, line-to-line voltages/currents, external conductor voltages/currents, in German: //Außenleiterspannungen/Außenleiterströme//): \\ The phase voltages are measured differentially between the lines. The phase voltages are therefore given as $U_{12}$, $U_{23}$, $U_{31}$. \\ The phase currents are given as the currents through a single line: $I_1$, $I_2$, $I_3$. \\ The potential of the star point is called **neutral** $\rm N$+The string voltages/currents are the values measured on the windings - independent of the winding connection. \\  
 +These voltages are shown in the previous images as $u_\rm U$, $u_\rm V$, and $u_\rm W$. 
 +</WRAP> 
 +  * **Phase voltages/currents**  $U_\rm L$, $I_\rm L$ (alternatively: phase-to-phase voltages/currents, line-to-line voltages/currents, external conductor voltages/currents, in German: //Außenleiterspannungen/Außenleiterströme//): <WRAP>  
 +The phase voltages are measured differentially between the lines. The phase voltages are therefore given as $U_{12}$, $U_{23}$, $U_{31}$. \\  
 +The phase currents are given as the currents through a single line: $I_1$, $I_2$, $I_3$. \\  
 +The potential of the star point is called **neutral** $\rm N$ </WRAP>
   * **Star-voltages** $U_\rm Y$ (alternatively: phase-to-neutral voltages, line-to-neutral voltages, in German: //Sternspannungen//): the voltages of the lines can be also measured or used referring to the neutral potential.   * **Star-voltages** $U_\rm Y$ (alternatively: phase-to-neutral voltages, line-to-neutral voltages, in German: //Sternspannungen//): the voltages of the lines can be also measured or used referring to the neutral potential.
 <WRAP> <imgcaption imageNo13 | Example of an Three-Phase System></imgcaption> {{drawio>ExampleThreePhaseSystem.svg}} </WRAP> <WRAP> <imgcaption imageNo13 | Example of an Three-Phase System></imgcaption> {{drawio>ExampleThreePhaseSystem.svg}} </WRAP>
Zeile 443: Zeile 474:
  
   - **Voltages**: It is obvious, that the phase voltages ($\underline{U}_{12}$, $\underline{U}_{23}$, $\underline{U}_{31}$) and star-voltages ($\underline{U}_{1 \rm N}$, $\underline{U}_{2 \rm N}$, $\underline{U}_{3 \rm N}$) are applied by the three-phase network independently of the load.   - **Voltages**: It is obvious, that the phase voltages ($\underline{U}_{12}$, $\underline{U}_{23}$, $\underline{U}_{31}$) and star-voltages ($\underline{U}_{1 \rm N}$, $\underline{U}_{2 \rm N}$, $\underline{U}_{3 \rm N}$) are applied by the three-phase network independently of the load.
-  - **Currents**: For the phase currents it applies that: $\underline{I}_1 + \underline{I}_2 + \underline{I}_3 = \underline{I}_\rm N $ (be aware, that the voltage given in the simulation is only the RMS value without the phase shift). \\ The phase currents are given by the phase impedances and the star-voltages: \\ \begin{align*} \underline{I}_1 = {{\underline{U}_{1 \rm N}}\over{\underline{Z}_1^\phantom{O}}} \quad , \quad \underline{I}_2 = {{\underline{U}_{2 \rm N}}\over{\underline{Z}_2^\phantom{O}}} \quad , \quad \underline{I}_3 = {{\underline{U}_{3 \rm N}}\over{\underline{Z}_3^\phantom{O}}} \\ \end{align*} +  - **Currents**: For the phase currents it applies that: $\underline{I}_1 + \underline{I}_2 + \underline{I}_3 = \underline{I}_\rm N $ (be aware, that the voltage given in the simulation is only the RMS value without the phase shift). <WRAP>  
-  - The **true power** $P_x$ for each string is given by the apparent power $S_x$ of the string times the indivitual phase angle $\varphi_x$ of the string: \\ \begin{align*} P_x &= S_x \cdot \cos \varphi_x = U_{\rm S} \cdot I_x \cdot \cos \varphi_x \end{align*} \\ Therefore, the resulting true power for the full load is: \\ \begin{align*} P = U_{\rm S} \cdot ( I_1 \cdot \cos \varphi_1 + I_2 \cdot \cos \varphi_2 + I_3 \cdot \cos \varphi_3) \end{align*} \\ The angle $\varphi$ here is given by $\varphi = \varphi_u - \varphi_i$, and hence: \\ \begin{align*} P = U_{\rm S} \cdot \left( I_1 \cdot \cos (\varphi_{u,1} - \varphi_{i,1})+ I_2 \cdot \cos (\varphi_{u,2} - \varphi_{i,2}) + I_3 \cdot \cos (\varphi_{u,3} - \varphi_{i,3})\right) \end{align*} +The phase currents are given by the phase impedances and the star-voltages: \\  
-  - For the **apparent power** one could think of $S_x$ for each string is given by the string voltage and the current through the string $S_x = U_{\rm S} \cdot I_x$. However, this misses out on the apparent power of the neutral line! \\ Even when considering all four lines a simple addition of all the apparent powers per phase would be problematic: The apparent power can be either positive or negative. There is the possibility to cancel each other out in the calculation, even when there is an unbalanced impedance given. It is better to use a definition, which can consider all of the phase apparent powers. \\ By DIN 40110 the **collective apparent power ** $S_\Sigma$ can be assumed as \\ \begin{align*} S_\Sigma &= \sqrt{\sum_x U_{x \rm N}^2+ \underbrace{U_{\rm N}^2}_{=0}} &\cdot & \sqrt{\sum_x I_{x}^2+ I_{\rm N}^2} \\         &=\sqrt{3} \cdot U_{\rm S} & \cdot & \sqrt{I_1^2 + I_2^2 + I_2^3 + I_{\rm N}^2} \\ \end{align*}+\begin{align*}  
 +\underline{I}_1 = {{\underline{U}_{1 \rm N}}\over{\underline{Z}_1^\phantom{O}}} \quad , \quad  
 +\underline{I}_2 = {{\underline{U}_{2 \rm N}}\over{\underline{Z}_2^\phantom{O}}} \quad , \quad  
 +\underline{I}_3 = {{\underline{U}_{3 \rm N}}\over{\underline{Z}_3^\phantom{O}}} \\ \end{align*}</WRAP> 
 +  - The **true power** $P_x$ for each string is given by the apparent power $S_x$ of the string times the individual phase angle $\varphi_x$ of the string: <WRAP>  
 +\begin{align*} P_x &= S_x \cdot \cos \varphi_x = U_{\rm S} \cdot I_x \cdot \cos \varphi_x \end{align*} \\  
 +Therefore, the resulting true power for the full load is: \\  
 +\begin{align*} P = U_{\rm S} \cdot ( I_1 \cdot \cos \varphi_1 + I_2 \cdot \cos \varphi_2 + I_3 \cdot \cos \varphi_3) \end{align*} \\  
 +The angle $\varphi$ here is given by $\varphi = \varphi_u - \varphi_i$, and hence: \\  
 +\begin{align*} P = U_{\rm S} \cdot \left( I_1 \cdot \cos (\varphi_{u,1} - \varphi_{i,1})+ I_2 \cdot \cos (\varphi_{u,2} - \varphi_{i,2}) + I_3 \cdot \cos (\varphi_{u,3} - \varphi_{i,3})\right) \end{align*} </WRAP> 
 +  - For the **apparent power** one could think of $S_x$ for each string is given by the string voltage and the current through the string $S_x = U_{\rm S} \cdot I_x$. However, this misses out on the apparent power of the neutral line! <WRAP>  
 +Even when considering all four lines a simple addition of all the apparent powers per phase would be problematic: The apparent power can be either positive or negative. There is the possibility to cancel each other out in the calculation, even when there is an unbalanced impedance given. It is better to use a definition, which can consider all of the phase apparent powers. \\  
 +By DIN 40110 the **collective apparent power ** $S_\Sigma$ can be assumed as \\  
 +\begin{align*}  
 +S_\Sigma &= \sqrt{\sum_x U_{x \rm N}^2+ \underbrace{U_{\rm N}^2}_{=0}} &\cdot & \sqrt{\sum_x I_{x}^2+ I_{\rm N}^2} \\ 
 +         &= \sqrt{3} \cdot U_{\rm S} & \cdot & \sqrt{I_1^2 + I_2^2 + I_2^3 + I_{\rm N}^2} \\ \end{align*}</WRAP>
   - Given the collective apparent power the **collective reactive power** $Q_\Sigma$ ist given by \\    \begin{align*}  Q_\Sigma = \sqrt{S_\Sigma^2-P^2} \end{align*}   - Given the collective apparent power the **collective reactive power** $Q_\Sigma$ ist given by \\    \begin{align*}  Q_\Sigma = \sqrt{S_\Sigma^2-P^2} \end{align*}
 </callout> </callout>
Zeile 451: Zeile 497:
 <panel type="info" title="Example"> <panel type="info" title="Example">
 In the example, this leads to: In the example, this leads to:
-  - The star-voltages and the phase voltages are given as \begin{align*} U_{\rm S}=& 231 ~\rm V = U_{\rm 1N} = U_{\rm 2N} = U_{\rm 3N} \\ U_{\rm L}=\sqrt{3} \cdot 231 ~\rm V = & 400 ~\rm V = U_{12} = U_{23} = U_{31} \end{align*} \\ The phasors of the star-voltages are given as: \\ {{drawio>FourWireStarPhaseVoltageFormula.svg}} +  - The star-voltages and the phase voltages are given as <WRAP>  
-  - Based on the star-voltages and the given impedances the phase currents are: \\ \begin{align*} \underline{I}_1 &= {{\underline{U}_{\rm 1N}}\over{\underline{Z}_1}} &= &{{231 ~\rm V}\over{10 ~\Omega + j \cdot 2\pi\cdot 50 {~\rm Hz} \cdot 1 {~\rm mH}}} &= &+23.08 {~\rm A} &- j \cdot 0.72 {~\rm A} &= &23.09 ~{~\rm A} \quad &\angle -1.8° \\ \underline{I}_2 &= {{\underline{U}_{\rm 2N}}\over{\underline{Z}_2}} &= &{{231 {~\rm V} \cdot \left( -{{1}\over{2}}-j{{1}\over{2}}\sqrt{3}\right)}\over{5 ~ \Omega + {{1}\over{j \cdot 2\pi\cdot 50{~\rm Hz} \cdot 100 {~\rm µF}}}}} &= &+ 5.58 {~\rm A} &- j \cdot 4.50 {~\rm A} &= & 7.17 {~\rm A} \quad &\angle -38.9° \\ \underline{I}_3 &= {{\underline{U}_{\rm 3N}}\over{\underline{Z}_3}} &= &{{231{~\rm V}\cdot \left( -{{1}\over{2}}+j{{1}\over{2}}\sqrt{3}\right)}\over{20 ~\Omega}} &= &-5.78{~\rm A} &+ j \cdot 10.00{~\rm A} &= &11.55 {~\rm A} \quad &\angle -240.0°  \\ \\ \underline{I}_{\rm N} & = \underline{I}_1 + \underline{I}_2 + \underline{I}_3 & & & = &+22.88 {~\rm A} &+ j \cdot 4.77 {~\rm A} &= &23.37 {~\rm A} \quad &\angle +11.8° \end{align*} +\begin{align*}  
-  - The true power is calculated by: \\ \begin{align*} P = 231 {~\rm V} \cdot \big( 23.09 {~\rm A} \cdot \cos (0° - (-1.8°))+ 7.17 {~\rm A} \cdot \cos (-120° - (-38.9°)) + 11.55 {~\rm A} \cdot \cos (-240° - (-240°)\big) = 8.26 {~\rm kW} \end{align*} +U_{\rm S}=& 231 ~\rm V = U_{\rm 1N} = U_{\rm 2N} = U_{\rm 3N} \\  
-  - The collective apparent power is: \\ \begin{align*} S_\Sigma &=\sqrt{3} \cdot 231 {~\rm V} & \cdot & \sqrt{(23.09 {~\rm A})^2 + (7.17 {~\rm A})^2 + (11.55 {~\rm A})^3 + (23.37{~\rm A})^2} = 14.23 {~\rm kVA}\\ \end{align*} +U_{\rm L}=\sqrt{3} \cdot 231 ~\rm V = & 400 ~\rm V = U_{12} = U_{23} = U_{31}  
-  - The collective reactive power is: \\ \begin{align*} Q_\Sigma &=\sqrt{(14.23 {~\rm kVA})^2 - (8.26 {~\rm kW})^2} =  11.58 {~\rm kVar} \\  \end{align*}+\end{align*} \\  
 +The phasors of the star-voltages are given as: \\ {{drawio>FourWireStarPhaseVoltageFormula.svg}}</WRAP> 
 +  - Based on the star-voltages and the given impedances the phase currents are: <WRAP>  
 +\begin{align*}  
 +\underline{I}_1 &= {{\underline{U}_{\rm 1N}}\over{\underline{Z}_1}}  
 +                &= &{{231 ~\rm V}\over{10 ~\Omega + {\rm j\cdot 2\pi\cdot 50 {~\rm Hz} \cdot 1 {~\rm mH}}}  
 +                &= &+23.08 {~\rm A} &{\rm j\cdot 0.72 {~\rm A} &= &23.09 ~{~\rm A} \quad &\angle -1.8° \\  
 +\underline{I}_2 &= {{\underline{U}_{\rm 2N}}\over{\underline{Z}_2}}  
 +                &= &{{231 {~\rm V} \cdot \left( -{{1}\over{2}}-{\rm j}{{1}\over{2}}\sqrt{3}\right)}\over{5 ~ \Omega + {{1}\over{{\rm j\cdot 2\pi\cdot 50{~\rm Hz} \cdot 100 {~\rm µF}}}}}  
 +                &= &+ 5.58 {~\rm A} &{\rm j\cdot 4.50 {~\rm A} &= & 7.17 {~\rm A} \quad &\angle -38.9° \\  
 +\underline{I}_3 &= {{\underline{U}_{\rm 3N}}\over{\underline{Z}_3}}  
 +                &= &{{231{~\rm V}\cdot \left( -{{1}\over{2}}+{\rm j}{{1}\over{2}}\sqrt{3}\right)}\over{20 ~\Omega}}  
 +                &= &-5.78{~\rm A} &{\rm j\cdot 10.00{~\rm A} &= &11.55 {~\rm A} \quad &\angle -240.0°  \\ \\  
 +\underline{I}_{\rm N}  
 +                &= \underline{I}_1 + \underline{I}_2 + \underline{I}_3 & & & = &+22.88 {~\rm A} &{\rm j\cdot 4.77 {~\rm A} &= &23.37 {~\rm A} \quad &\angle +11.8°  
 +\end{align*} </WRAP> 
 +  - The true power is calculated by: <WRAP>  
 +\begin{align*}  
 +P = 231 {~\rm V} \cdot \big( 23.09 {~\rm A} \cdot \cos (0° - (-1.8°))+ 7.17 {~\rm A} \cdot \cos (-120° - (-38.9°)) + 11.55 {~\rm A} \cdot \cos (-240° - (-240°)\big)  
 +  = 8.26 {~\rm kW}  
 +\end{align*} </WRAP> 
 +  - The collective apparent power is: <WRAP>  
 +\begin{align*}  
 +S_\Sigma &=\sqrt{3} \cdot 231 {~\rm V} & \cdot & \sqrt{(23.09 {~\rm A})^2 + (7.17 {~\rm A})^2 + (11.55 {~\rm A})^3 + (23.37{~\rm A})^2}  
 +          = 14.23 {~\rm kVA}\\  
 +\end{align*}</WRAP> 
 +  - The collective reactive power is: <WRAP>  
 +\begin{align*}  
 +Q_\Sigma &=\sqrt{(14.23 {~\rm kVA})^2 - (8.26 {~\rm kW})^2}  
 +          =  11.58 {~\rm kVar} \\   
 +\end{align*}</WRAP>
  
 <WRAP> <imgcaption imageNo15 | Load in Wye connection (Four-Wire System) ></imgcaption> {{drawio>PhasorWyeFourWire.svg}} </WRAP> <WRAP> <imgcaption imageNo15 | Load in Wye connection (Four-Wire System) ></imgcaption> {{drawio>PhasorWyeFourWire.svg}} </WRAP>
Zeile 465: Zeile 541:
 In the case of a symmetric load, the situation and the formulas get much simpler: In the case of a symmetric load, the situation and the formulas get much simpler:
   - The **phase-voltages** $U_\rm L$ and star-voltages $U_{\rm Y} = U_{\rm S}$ are equal to the asymmetric load: $U_{\rm L} = \sqrt{3}\cdot U_{\rm S}$.   - The **phase-voltages** $U_\rm L$ and star-voltages $U_{\rm Y} = U_{\rm S}$ are equal to the asymmetric load: $U_{\rm L} = \sqrt{3}\cdot U_{\rm S}$.
-  - For equal impedances the absolute value of all **phase currents** $I_x$ are the same: $|\underline{I}_x|= |\underline{I}_{\rm S}| = \left|{{\underline{U}_{\rm S}}\over{\underline{Z}_{\rm S}^\phantom{O}}} \right|$. Since the phase currents have the same absolute value and have the same $\varphi$, they will add up to zero. Therefore there is no current on the neutral line: $I_{\rm N} =0$ +  - For equal impedances the absolute value of all **phase currents** $I_x$ are the same: $|\underline{I}_x|= |\underline{I}_{\rm S}| = \left|{{\underline{U}_{\rm S}}\over{\underline{Z}_{\rm S}^\phantom{O}}} \right|$. \\ Since the phase currents have the same absolute value and have the same $\varphi$, they will add up to zero. Therefore there is no current on the neutral line: $I_{\rm N} =0$ 
-  - The **true power** is three times the true power of a single phase: $P = 3 \cdot U_{\rm S} I_{\rm S} \cdot \cos \varphi$. Based on the line voltages $U_{\rm L}$, the formula is $P = \sqrt{3} \cdot U_{\rm L} I_{\rm S} \cdot \cos \varphi$ +  - The **true power** is three times the true power of a single phase: $P = 3 \cdot U_{\rm S} I_{\rm S} \cdot \cos \varphi$. \\ Based on the line voltages $U_{\rm L}$, the formula is $P = \sqrt{3} \cdot U_{\rm L} I_{\rm S} \cdot \cos \varphi$ 
-  - The **(collective) apparent power** - given the formula above - is: $S_\Sigma = \sqrt{3}\cdot U_{\rm S} \cdot \sqrt{3\cdot I_{\rm S}^2} = 3 \cdot U_{\rm S} I_{\rm S}$. This corresponds to three times the apparent power of a single phase.+  - The **(collective) apparent power** - given the formula above - is: $S_\Sigma = \sqrt{3}\cdot U_{\rm S} \cdot \sqrt{3\cdot I_{\rm S}^2} = 3 \cdot U_{\rm S} I_{\rm S}$. \\ This corresponds to three times the apparent power of a single phase.
   - The **reactive power** leads to:  $Q_\Sigma = \sqrt{S_\Sigma^2 - P^2} = 3 \cdot U_{\rm S} I_{\rm S} \cdot \sin (\varphi)$.   - The **reactive power** leads to:  $Q_\Sigma = \sqrt{S_\Sigma^2 - P^2} = 3 \cdot U_{\rm S} I_{\rm S} \cdot \sin (\varphi)$.
 </callout> </callout>
Zeile 499: Zeile 575:
   * With the switch $S$, the star potential can short-circuited to the neutral potential; so set $\underline{U}_{\rm SN}=0$. This enables a comparison with the previous four-wire three-phase system.   * With the switch $S$, the star potential can short-circuited to the neutral potential; so set $\underline{U}_{\rm SN}=0$. This enables a comparison with the previous four-wire three-phase system.
  
-Also here the "path": calculate voltages $\rightarrow$ calculate currents $\rightarrow$ calculate true power $\rightarrow$ calculate apparent and reactive power is the best way to get to all wanted values. +Also herethe "path": calculate voltages $\rightarrow$ calculate currents $\rightarrow$ calculate true power $\rightarrow$ calculate apparent and reactive power is the best way to get to all wanted values. 
-  - **Voltages**: Here, only the phase voltages ($\underline{U}_{12}$, $\underline{U}_{23}$, $\underline{U}_{31}$) are applied by the three-phase net, independently of the load. The star-voltages of the load $\underline{U}_{x \rm S}$ are not given by the network anymoresince the neutral potential is not provided. The network star-voltages and the load star-voltages can be connected in the following way: The calculation of the star-voltage $\underline{U}_{\rm SN}$ is explained after investigating the currents. \\ \begin{align*} \underline{U}_{\rm 1S} &= \underline{U}_{\rm 1N}  - \underline{U}_{\rm SN} \\ \underline{U}_{\rm 2S} &= \underline{U}_{\rm 2N}  - \underline{U}_{\rm SN} \\ \underline{U}_{\rm 3S} &= \underline{U}_{\rm 3N}  - \underline{U}_{\rm SN} \\ \end{align*} +  - **Voltages**: Here, only the phase voltages ($\underline{U}_{12}$, $\underline{U}_{23}$, $\underline{U}_{31}$) are applied by the three-phase net, independently of the load. The star-voltages of the load $\underline{U}_{x \rm S}$ are not given by the network anymore since the neutral potential is not provided. The network star-voltages and the load star-voltages can be connected in the following way: The calculation of the star-voltage $\underline{U}_{\rm SN}$ is explained after investigating the currents. <WRAP>  
-  - **Currents**: For the phase currents it applies that: $\underline{I}_1 + \underline{I}_2 + \underline{I}_3 = 0$ (again, voltages given in the simulation are only the RMS value without the phase shift). \\ The phase currents are given by the phase impedances and the star-voltages: \\ \begin{align*} \underline{I}_1 = {{\underline{U}_{\rm 1S}}\over{\underline{Z}_1^\phantom{O}}} \quad , \quad \underline{I}_2 = {{\underline{U}_{\rm 2S}}\over{\underline{Z}_2^\phantom{O}}} \quad , \quad \underline{I}_3 = {{\underline{U}_{\rm 3S}}\over{\underline{Z}_3^\phantom{O}}} \end{align*} \\ To get $\underline{U}_{\rm SN}$, one has to combine the individual formulas for $\underline{I}_x$, $\underline{U}_{x \rm S}$ and that the $\sum_x \underline{I}_x =0$. This leads to \\ \begin{align*} \underline{U}_{\rm SN} = {{\sum_x \left( \Large{{{1}\over{\underline{Z}_x^\phantom{O}}}} \cdot \normalsize{\underline{U}_{x \rm N}} \right) }\over{\sum_x \left( \Large{{{1}\over{\underline{Z}_x^\phantom{O}}}} \right) }} \end{align*} +\begin{align*}  
-  - Also here, the **true power** $P_x$ for each string is given by: \\ \begin{align*} P_x &= S_x \cdot \cos \varphi_x = U_{\rm S} \cdot I_x \cdot \cos \varphi_x \end{align*} \\ Also here, the resulting true power for the full load is (with $U_{\rm S}$ as the RMS value of the network star-voltage): \\ \begin{align*} P &= U_{\rm S} \cdot ( I_1 \cdot \cos \varphi_1 + I_2 \cdot \cos \varphi_2 + I_3 \cdot \cos \varphi_3) \\ &= U_{\rm S} \cdot \left( I_1 \cdot \cos (\varphi_{u,1} - \varphi_{i,1})+ I_2 \cdot \cos (\varphi_{u,2} - \varphi_{i,2}) + I_3 \cdot \cos (\varphi_{u,3} - \varphi_{i,3})\right) \end{align*} +\underline{U}_{\rm 1S} &= \underline{U}_{\rm 1N}  - \underline{U}_{\rm SN} \\  
-  - Since the three-wire system has no current out of the network star point, the **apparent power** $\underline{S}_x$ for each string is given by the string voltage and the current through the string $\underline{S}_x = \underline{U}_{x \rm S} \cdot \underline{I}_x^*$. This leads to an overall apparent power $\underline{S}$ of \\ \begin{align*} \underline{S} &= P + j\cdot Q = \sum_x \underline{S}_x = \sum_x  \left( \underline{U}_{x \rm S} \cdot \underline{I}_x^* \right) \end{align*} \\ In order to simplify the calculation, it would be better to have a formula based on the network star-voltages: \\ \begin{align*} \underline{S} &= \sum_x  \left( \underline{U}_{x \rm N} \cdot \underline{I}_x^* \right) + \underline{U}_{x \rm N} \cdot \underbrace{\underline{I}_{\rm N}}_{=0} \\ & \sum_x  \left( \underline{U}_{x \rm N} \cdot \underline{I}_x^* \right)  \\ \end{align*} Given that $\sum_x \underline{I}_x =0$, it is also true, that $\sum_x \underline{I}_x^* =0$ and so $\underline{I}_3^* = -\underline{I}_1^* - \underline{I}_2^*$. \\ By this, one can further simplify the calculation for the apparent power down to \\ \begin{align*} \underline{S} &= \underline{U}_{13} \cdot \underline{I}_1^* + \underline{U}_{23} \cdot \underline{I}_2^* \\ &= \underline{U}_{12} \cdot \underline{I}_1^* + \underline{U}_{32} \cdot \underline{I}_3^*  \\ &= \underline{U}_{21} \cdot \underline{I}_2^* + \underline{U}_{31} \cdot \underline{I}_3^*  \end{align*} \\ For the phase voltages it applies that: $\underline{U}_{12} = - \underline{U}_{21}$, $\underline{U}_{23} = - \underline{U}_{32}$, $\underline{U}_{31} = - \underline{U}_{13}$. For the **collective apparent power,** $S_\Sigma$ the formula differs in the definition (to consider the reactive part more for an unbalanced generator). Since we consider here a given balanced network the definition leads to a similar result as based on the four-wire connection:  \\ \begin{align*} S_\Sigma &= \sqrt{ {{1}\over{2}} \cdot (U_{12}^2 + U_{23}^2 + U_{31}^2) } \cdot \sqrt{\sum_x I_x^2} &= \sqrt{3} U_{\rm S} \cdot \sqrt{\sum_x I_x^2}  \end{align*}   +\underline{U}_{\rm 2S} &= \underline{U}_{\rm 2N}  - \underline{U}_{\rm SN} \\  
-  - The abolute **reactive power** $Q$ can be calulated by the apparent power: \\ \begin{align*} j\cdot Q &= \underline{S} - P  \end{align*}  \\ the **collective reactive power** $Q_\Sigma$ is given by the collective apparent power:  \\ \begin{align*} Q &= \sqrt{S_\Sigma^2 - P^2}  \end{align*}  +\underline{U}_{\rm 3S} &= \underline{U}_{\rm 3N}  - \underline{U}_{\rm SN} \\  
 +\end{align*}</WRAP> 
 +  - **Currents**: For the phase currents it applies that: $\underline{I}_1 + \underline{I}_2 + \underline{I}_3 = 0$ (again, voltages given in the simulation are only the RMS value without the phase shift). \\ The phase currents are given by the phase impedances and the star-voltages: <WRAP>  
 +\begin{align*}  
 +\underline{I}_1 = {{\underline{U}_{\rm 1S}}\over{\underline{Z}_1^\phantom{O}}} \quad , \quad \underline{I}_2  
 +                = {{\underline{U}_{\rm 2S}}\over{\underline{Z}_2^\phantom{O}}} \quad , \quad \underline{I}_3  
 +                = {{\underline{U}_{\rm 3S}}\over{\underline{Z}_3^\phantom{O}}}  
 +\end{align*} \\  
 +To get $\underline{U}_{\rm SN}$, one has to combine the individual formulas for $\underline{I}_x$, $\underline{U}_{x \rm S}$ and that the $\sum_x \underline{I}_x =0$. This leads to \\  
 +\begin{align*}  
 +\underline{U}_{\rm SN}                                = {{\sum_x \left( \Large{{{1}\over{\underline{Z}_x^\phantom{O}}}}  
 +\cdot \normalsize{\underline{U}_{x \rm N}} \right) }\over{\sum_x \left( \Large{{{1}\over{\underline{Z}_x^\phantom{O}}}} \right) }}  
 +\end{align*}</WRAP> 
 +  - Also here, the **true power** $P_x$ for each string is given by: <WRAP>  
 +\begin{align*}  
 +P_x &= S_x \cdot \cos \varphi_x = U_{\rm S} \cdot I_x \cdot \cos \varphi_x  
 +\end{align*} \\  
 +Also here, the resulting true power for the full load is (with $U_{\rm S}$ as the RMS value of the network star-voltage): \\  
 +\begin{align*}  
 +P &= U_{\rm S} \cdot      ( I_1 \cdot \cos \varphi_1                       + I_2 \cdot \cos \varphi_2                       + I_3 \cdot \cos \varphi_3) \\  
 +  &= U_{\rm S} \cdot \left( I_1 \cdot \cos (\varphi_{u,1} - \varphi_{i,1}) + I_2 \cdot \cos (\varphi_{u,2} - \varphi_{i,2}) + I_3 \cdot \cos (\varphi_{u,3} - \varphi_{i,3})\right)  
 +\end{align*}</WRAP> 
 +  - Since the three-wire system has no current out of the network star point, the **apparent power** $\underline{S}_x$ for each string is given by the string voltage and the current through the string $\underline{S}_x = \underline{U}_{x \rm S} \cdot \underline{I}_x^*$. This leads to an overall apparent power $\underline{S}$ of <WRAP>  
 +\begin{align*}  
 +\underline{S} &= P + {\rm j}\cdot Q = \sum_x \underline{S}_x = \sum_x  \left( \underline{U}_{x \rm S} \cdot \underline{I}_x^* \right) \end{align*} \\  
 +In order to simplify the calculation, it would be better to have a formula based on the network star-voltages: \\  
 +\begin{align*}  
 +\underline{S} &= \sum_x  \left( \underline{U}_{x \rm N} \cdot \underline{I}_x^* \right) + \underline{U}_{x \rm N} \cdot \underbrace{\underline{I}_{\rm N}}_{=0} \\  
 +              & \sum_x  \left( \underline{U}_{x \rm N} \cdot \underline{I}_x^* \right)  \\  
 +\end{align*}  
 +Given that $\sum_x \underline{I}_x =0$, it is also true, that $\sum_x \underline{I}_x^* =0$ and so $\underline{I}_3^* = -\underline{I}_1^* - \underline{I}_2^*$. \\  
 +By this, one can further simplify the calculation for the apparent power down to \\  
 +\begin{align*}  
 +\underline{S} &= \underline{U}_{13} \cdot \underline{I}_1^* + \underline{U}_{23} \cdot \underline{I}_2^* \\  
 +              &= \underline{U}_{12} \cdot \underline{I}_1^* + \underline{U}_{32} \cdot \underline{I}_3^*  \\  
 +              &= \underline{U}_{21} \cdot \underline{I}_2^* + \underline{U}_{31} \cdot \underline{I}_3^*   
 +\end{align*} \\  
 +For the phase voltages it applies that: $\underline{U}_{12} = - \underline{U}_{21}$, $\underline{U}_{23} = - \underline{U}_{32}$, $\underline{U}_{31} = - \underline{U}_{13}$. For the **collective apparent power,** $S_\Sigma$ the formula differs in the definition (to consider the reactive part more for an unbalanced generator). Since we consider here a given balanced network the definition leads to a similar result as based on the four-wire connection:  \\  
 +\begin{align*}  
 +S_\Sigma &= \sqrt{ {{1}\over{2}} \cdot (U_{12}^2 + U_{23}^2 + U_{31}^2) } \cdot \sqrt{\sum_x I_x^2} &= \sqrt{3} U_{\rm S} \cdot \sqrt{\sum_x I_x^2}   
 +\end{align*}  </WRAP> 
 +  - The abolute **reactive power** $Q$ can be calulated by the apparent power: <WRAP>  
 +\begin{align*} {\rm j}\cdot Q &= \underline{S} - P  \end{align*}  \\  
 +the **collective reactive power** $Q_\Sigma$ is given by the collective apparent power:  \\  
 +\begin{align*} Q &= \sqrt{S_\Sigma^2 - P^2}  \end{align*}  </WRAP>
 </callout> </callout>
  
Zeile 510: Zeile 630:
 In the example, this leads to: In the example, this leads to:
   - The phase voltages are given as \begin{align*} U_{\rm L}=\sqrt{3} \cdot 231 {~\rm V} = & 400 {~\rm V} = U_{12} = U_{23} = U_{31} \end{align*} \\ The phasors of the star-voltages of the network are again given as \\ {{drawio>FourWireStarPhaseVoltageFormula.svg}}   - The phase voltages are given as \begin{align*} U_{\rm L}=\sqrt{3} \cdot 231 {~\rm V} = & 400 {~\rm V} = U_{12} = U_{23} = U_{31} \end{align*} \\ The phasors of the star-voltages of the network are again given as \\ {{drawio>FourWireStarPhaseVoltageFormula.svg}}
-  - Based on the star-voltages of the network and the given impedances the star-voltage $\underline{U}_{\rm SN}$ of the load can be calculated with: \\ \begin{align*} \underline{U}_{\rm SN} = {{\sum_x \left( \Large{{{1}\over{\underline{Z}_x^\phantom{O}}}} \cdot \normalsize{\underline{U}_{x \rm N}} \right) }\over{\sum_x \left( \Large{{{1}\over{\underline{Z}_x^\phantom{O}}}} \right) }} \end{align*} \\ Once investigating the numerator $\sum_x \big( {{1}\over{\underline{Z}_x^\phantom{O}}} \cdot \underline{U}_{x \rm N} \big)$, once can see, that it just equals the sum of the phase currents of the four-wire system. So, the numerator equals the (in the three-wire system: fictive) current on the neutral line. \\ The numerator is therefore: $22.88 {~\rm A} + j \cdot 4.77 {~\rm A}$ (see calculation for the four-wire system). \\ The denominator is: \\ \begin{align*} \sum_x  {{1}\over{\underline{Z}_x^\phantom{O}}}  &= {{1}\over{10~\Omega + j \cdot 2\pi\cdot 50{~\rm Hz} \cdot 1{~\rm mH}                  }}  + {{1}\over{5~\Omega + {{1}\over{j \cdot 2\pi\cdot 50{~\rm Hz} \cdot 100 {~\rm µF} }} }}+ {{1}\over{20~\Omega     }} \\ \\ &= 0.1547  ~1/\Omega + j \cdot 0.02752 ~1/\Omega  \end{align*} \\ The star-voltage $\underline{U}_{\rm SN}$ of the load is: \begin{align*}  \underline{U}_{\rm SN} &= {{22.88 {~\rm A} + j \cdot 4.77 {~\rm A}}\over{0.1547 ~1/\Omega + j \cdot 0.0275 ~1/\Omega}} \\ \\                   &= 148.7{~\rm V} + j \cdot 4.41 {~\rm V} \end{align*} \\ Given this star-voltage $\underline{U}_{\rm SN}$ of the load, the phase currents are: \\ \begin{align*} \underline{I}_1 &= {{\underline{U}_{\rm 1N} - \underline{U}_{\rm SN}}\over{\underline{Z}_1^\phantom{O}}} & = & {{231{~\rm V} - 148.7{~\rm V} - j \cdot 4.41 {~\rm V}}\over{10~\Omega + j \cdot 2\pi\cdot 50{~\rm Hz} \cdot 1{~\rm mH} }} & = & +8.21{~\rm A} - j \cdot 0.70{~\rm A} &=&  8.24 {~\rm A} \quad  \angle -4.9° \\ \underline{I}_2 &= {{\underline{U}_{\rm 2N} - \underline{U}_{\rm SN}}\over{\underline{Z}_2^\phantom{O}}} & = & {{231{~\rm V} \cdot \left( -{{1}\over{2}}-j{{1}\over{2}}\sqrt{3}\right) - 148.7{~\rm V} - j \cdot 4.41 {~\rm V}}\over{5~\Omega + {{1}\over{j \cdot 2\pi\cdot 50{~\rm Hz} \cdot 100{~\rm µF} }}}} & = & +5.00{~\rm A} + j \cdot 9.08{~\rm A} & =& 10.36 {~\rm A} \quad \angle -61.2° \\ \underline{I}_3 &= {{\underline{U}_{\rm 3N} - \underline{U}_{\rm SN}}\over{\underline{Z}_3^\phantom{O}}} & = & {{231{~\rm V} \cdot \left( -{{1}\over{2}}+j{{1}\over{2}}\sqrt{3}\right) - 148.7{~\rm V} - j \cdot 4.41 {~\rm V}}\over{20~\Omega }} &= & -13.21{~\rm A} + j \cdot 9.78{~\rm A} & =& 16.44{~\rm A} \quad  \angle +143.5° \end{align*} \\+  - Based on the star-voltages of the network and the given impedances the star-voltage $\underline{U}_{\rm SN}$ of the load can be calculated with: <WRAP>  
 +\begin{align*}  
 +\underline{U}_{\rm SN} = {{\sum_x \left( \Large{{{1}\over{\underline{Z}_x^\phantom{O}}}} \cdot \normalsize{\underline{U}_{x \rm N}} \right) } 
 +                     \over{\sum_x \left( \Large{{{1}\over{\underline{Z}_x^\phantom{O}}}} \right) }}  
 +\end{align*} \\  
 +Once investigating the numerator $\sum_x \big( {{1}\over{\underline{Z}_x^\phantom{O}}} \cdot \underline{U}_{x \rm N} \big)$, once can see, that it just equals the sum of the phase currents of the four-wire system. So, the numerator equals the (in the three-wire system: fictive) current on the neutral line. \\  
 +The numerator is therefore: $22.88 {~\rm A} + {\rm j\cdot 4.77 {~\rm A}$ (see calculation for the four-wire system). \\  
 +The denominator is: \\  
 +\begin{align*}  
 +\sum_x  {{1}\over{\underline{Z}_x^\phantom{O}}}  &= {{1}\over{10~\Omega +          {\rm j\cdot 2\pi\cdot 50{~\rm Hz} \cdot 1   {~\rm mH} }} 
 +                                                  + {{1}\over{5~\Omega + {{1}\over{{\rm j\cdot 2\pi\cdot 50{~\rm Hz} \cdot 100 {~\rm µF} }} }} 
 +                                                  + {{1}\over{20~\Omega }} \\ \\  
 +                                                  &= 0.1547  ~1/\Omega + {\rm j\cdot 0.02752 ~1/\Omega  \end{align*} \\  
 +The star-voltage $\underline{U}_{\rm SN}$ of the load is:  
 +\begin{align*}   
 +\underline{U}_{\rm SN} &= {{22.88 {~\rm A} + {\rm j\cdot 4.77 {~\rm A}}\over{0.1547 ~1/\Omega + {\rm j\cdot 0.0275 ~1/\Omega}} \\ \\ 
 +                       &= 148.7   {~\rm V} + {\rm j\cdot 4.41 {~\rm V} \end{align*} \\  
 +Given this star-voltage $\underline{U}_{\rm SN}$ of the load, the phase currents are: \\  
 +\begin{align*}  
 +\underline{I}_1 &= {{\underline{U}_{\rm 1N} - \underline{U}_{\rm SN}}\over{\underline{Z}_1^\phantom{O}}}  
 +                & = & {{231{~\rm V} - 148.7{~\rm V} - {\rm j\cdot 4.41 {~\rm V}}\over{10~\Omega + {\rm j\cdot 2\pi\cdot 50{~\rm Hz} \cdot 1{~\rm mH} }}  
 +                & = & +8.21{~\rm A}                 {\rm j\cdot 0.70{~\rm A} &=&  8.24 {~\rm A} \quad  \angle -4.9° \\  
 +\underline{I}_2 &= {{\underline{U}_{\rm 2N} - \underline{U}_{\rm SN}}\over{\underline{Z}_2^\phantom{O}}}  
 +                & = & {{231{~\rm V} \cdot \left( -{{1}\over{2}}-{\rm j}{{1}\over{2}}\sqrt{3}\right) - 148.7{~\rm V} - {\rm j\cdot 4.41 {~\rm V}}\over{5~\Omega + {{1}\over{{\rm j\cdot 2\pi\cdot 50{~\rm Hz} \cdot 100{~\rm µF} }}}}  
 +                & = & +5.00{~\rm A} + {\rm j\cdot 9.08{~\rm A} & =& 10.36 {~\rm A} \quad \angle -61.2° \\ 
 +\underline{I}_3 &= {{\underline{U}_{\rm 3N} - \underline{U}_{\rm SN}}\over{\underline{Z}_3^\phantom{O}}}  
 +                & = & {{231{~\rm V} \cdot \left( -{{1}\over{2}}+{\rm j}{{1}\over{2}}\sqrt{3}\right) - 148.7{~\rm V} - {\rm j\cdot 4.41 {~\rm V}}\over{20~\Omega }}  
 +                &= & -13.21{~\rm A} + {\rm j\cdot 9.78{~\rm A} & =& 16.44{~\rm A} \quad  \angle +143.5° \end{align*} \\ </WRAP>
   - The true power is calculated by: \\ \begin{align*} P = 231{~\rm V} \cdot \big( 8.24 {~\rm A} \cdot \cos (0° - (-4.9°))+ 10.36{~\rm A} \cdot \cos (-120° - (-61.2°)) + 16.44 {~\rm A} \cdot \cos (-240° - (+143.5°)\big) = 6.62 {~\rm kW} \end{align*}   - The true power is calculated by: \\ \begin{align*} P = 231{~\rm V} \cdot \big( 8.24 {~\rm A} \cdot \cos (0° - (-4.9°))+ 10.36{~\rm A} \cdot \cos (-120° - (-61.2°)) + 16.44 {~\rm A} \cdot \cos (-240° - (+143.5°)\big) = 6.62 {~\rm kW} \end{align*}
-  - The apparent power $\underline{S}$ is: \\ \begin{align*} \underline{S} &= \underline{U}_{13} \cdot \underline{I}_1^* + \underline{U}_{23} \cdot \underline{I}_2^* &=& 400{~\rm V} \cdot (- e^{-j \cdot 7/6 \pi} \cdot (8.21 {~\rm A} + j \cdot 0.70 {~\rm A} )  +  e^{- j \cdot 3/6 \pi} \cdot (5.00{~\rm A} - j \cdot 9.08{~\rm A}) ) &= 6.62 {~\rm kW} - j \cdot 3.40 {~\rm kVAr} \\ &= \underline{U}_{12} \cdot \underline{I}_1^* + \underline{U}_{32} \cdot \underline{I}_3^* &=& 400{~\rm V} \cdot (e^{j \cdot 1/6 \pi} \cdot (8.21{~\rm A} + j \cdot 0.70{~\rm A}) - e^{-j \cdot 3/6 \pi} \cdot (-13.21{~\rm A} -j \cdot 9.78{~\rm A})) &= 6.62 {~\rm kW} - j \cdot 3.40 {~\rm kVAr} \\ &= \underline{U}_{21} \cdot \underline{I}_2^* + \underline{U}_{31} \cdot \underline{I}_3^* &=& 400{~\rm V} \cdot (- e^{j \cdot 1/6 \pi} \cdot (5.00{~\rm A} - j \cdot 9.08{~\rm A}) + e^{- j \cdot 7/6 \pi} \cdot (-13.21{~\rm A} - j \cdot 9.78{~\rm A})) &= 6.62 {~\rm kW} - j \cdot 3.40 {~\rm kVAr} \\ & = 7.44 {~\rm kVA} \quad \angle -27.2°\end{align*}  \\ The collective apparent power is: \\ \begin{align*} S_\Sigma &= \sqrt{3} U_{\rm S} \cdot \sqrt{\sum_x I_x^2} \\ &= \sqrt{3} \cdot 231{~\rm V} \cdot \sqrt{(8.24{~\rm A})^2+(10.36{~\rm A})^2+(16.44A)^2} = 8.45 {~\rm kVA} \end{align*}   +  - The apparent power $\underline{S}$ is: <WRAP>  
-  - The reactive power is: \begin{align*} Q &= -j \cdot (\underline{S} - P) =  -3.40{~\rm kVAr} \\  \end{align*} \\ The collective reactive power is: \\ \begin{align*} Q_\Sigma &=\sqrt{(8.44 {~\rm kVA})^2 - (6.62 {~\rm kW})^2} =  5.24{~\rm kVAr} \\  \end{align*}+\begin{align*}  
 +\underline{S} &= \underline{U}_{13} \cdot \underline{I}_1^* + \underline{U}_{23} \cdot \underline{I}_2^*  
 +           &=& 400{~\rm V} \cdot (- {\rm e}^{-{\rm j\cdot 7/6 \pi} \cdot (8.21{~\rm A} + {\rm j}\cdot 0.70 {~\rm A})  + {\rm e}^{-{\rm j\cdot 3/6 \pi} \cdot (  5.00{~\rm A} -{\rm j\cdot 9.08{~\rm A}) )  
 +             &= 6.62 {~\rm kW} - {\rm j\cdot 3.40 {~\rm kVAr} \\  
 +             &= \underline{U}_{12} \cdot \underline{I}_1^* + \underline{U}_{32} \cdot \underline{I}_3^*  
 +           &=& 400{~\rm V} \cdot (  {\rm e}^{{\rm j\cdot 1/6 \pi} \cdot (8.21{~\rm A} +  {\rm j}\cdot 0.70{~\rm A})   {\rm e}^{-{\rm j\cdot 3/6 \pi} \cdot (-13.21{~\rm A} -{\rm j\cdot 9.78{~\rm A}))  
 +              &= 6.62 {~\rm kW} - {\rm j\cdot 3.40 {~\rm kVAr} \\  
 +              &= \underline{U}_{21} \cdot \underline{I}_2^* + \underline{U}_{31} \cdot \underline{I}_3^*  
 +           &=& 400{~\rm V} \cdot (- {\rm e}^{{\rm j\cdot 1/6 \pi} \cdot (5.00{~\rm A} -  {\rm j}\cdot 9.08{~\rm A}) + {\rm e}^{- {\rm j\cdot 7/6 \pi} \cdot (-13.21{~\rm A} - {\rm j\cdot 9.78{~\rm A}))  
 +              &= 6.62 {~\rm kW} - {\rm j\cdot 3.40 {~\rm kVAr} \\  
 +              & = 7.44 {~\rm kVA} \quad \angle -27.2° 
 +\end{align*}  \\  
 +The collective apparent power is: \\  
 +\begin{align*}  
 +S_\Sigma &= \sqrt{3} U_{\rm S}         \cdot \sqrt{\sum_x I_x^2} \\  
 +         &= \sqrt{3} \cdot 231{~\rm V} \cdot \sqrt{(8.24{~\rm A})^2+(10.36{~\rm A})^2+(16.44A)^2}  
 +          = 8.45 {~\rm kVA} \end{align*}  </WRAP> 
 +  - The reactive power is: <WRAP>  
 +\begin{align*} Q &= -{\rm j\cdot (\underline{S} - P) =  -3.40{~\rm kVAr} \\   
 +\end{align*} \\  
 +The collective reactive power is: \\  
 +\begin{align*} Q_\Sigma &=\sqrt{(8.44 {~\rm kVA})^2 - (6.62 {~\rm kW})^2} =  5.24{~\rm kVAr} \\   
 +\end{align*} </WRAP>
  
 <WRAP> <imgcaption imageNo16 | Load in Wye connection (Three-Wire System) ></imgcaption> {{drawio>PhasorWyeThreeWire.svg}} </WRAP> <WRAP> <imgcaption imageNo16 | Load in Wye connection (Three-Wire System) ></imgcaption> {{drawio>PhasorWyeThreeWire.svg}} </WRAP>
Zeile 552: Zeile 721:
  
 Again here the "path": calculate voltages $\rightarrow$ calculate currents $\rightarrow$ calculate true power $\rightarrow$ calculate apparent and reactive power is the best way to get to all wanted values. Again here the "path": calculate voltages $\rightarrow$ calculate currents $\rightarrow$ calculate true power $\rightarrow$ calculate apparent and reactive power is the best way to get to all wanted values.
-  - **Voltages**: Here, the string voltages of the load are applied by the three-phase net: \\ \begin{align*} \underline{U}_{12} &=& U_{\rm L} \cdot e^{j\cdot {{1}\over{6}}} \\ \underline{U }_{23} &=& U_{\rm L} \cdot e^{- j\cdot {{3}\over{6}}} \\ \underline{U }_{31} &=& U_{\rm L} \cdot e^{- j\cdot {{7}\over{6}}} \end{align*} +  - **Voltages**: Here, the string voltages of the load are applied by the three-phase net: <WRAP>  
-  - **Currents**: For the phase currents one can focus on the nodes between the phase lines and the strings. An incomming single-phase current onto a note divides into two string currents: \begin{align*} \underline{I}_{1} = \underline{I}_{12} - \underline{I}_{31} \\ \underline{I}_{2} = \underline{I}_{23} - \underline{I}_{12} \\ \underline{I}_{3} = \underline{I}_{31} - \underline{I}_{23} \\ \end{align*} \\ The string currents can be calculated by the string voltages and the impedances: \\ \begin{align*} \underline{I}_{12} = {{\underline{U}_{12}}\over{\underline{Z}_{12}^\phantom{O}}} \quad , \quad \underline{I}_{23} = {{\underline{U}_{23}}\over{\underline{Z}_{23}^\phantom{O}}} \quad , \quad \underline{I}_{31} = {{\underline{U}_{31}}\over{\underline{Z}_{31}^\phantom{O}}} \end{align*} +\begin{align*}  
 +\underline{U}_{12} &=& U_{\rm L} \cdot {\rm e}^{  {\rm j}\cdot {{1}\over{6}}} \\  
 +\underline{U}_{23} &=& U_{\rm L} \cdot {\rm e}^{- {\rm j}\cdot {{3}\over{6}}} \\  
 +\underline{U}_{31} &=& U_{\rm L} \cdot {\rm e}^{- {\rm j}\cdot {{7}\over{6}}}  
 +\end{align*}</WRAP> 
 +  - **Currents**: For the phase currents one can focus on the nodes between the phase lines and the strings. An incomming single-phase current onto a note divides into two string currents: <WRAP> 
 +\begin{align*}  
 +\underline{I}_{1} = \underline{I}_{12} - \underline{I}_{31} \\  
 +\underline{I}_{2} = \underline{I}_{23} - \underline{I}_{12} \\  
 +\underline{I}_{3} = \underline{I}_{31} - \underline{I}_{23} \\  
 +\end{align*} \\  
 +The string currents can be calculated by the string voltages and the impedances: \\  
 +\begin{align*}  
 +\underline{I}_{12} = {{\underline{U}_{12}}\over{\underline{Z}_{12}^\phantom{O}}} \quad , \quad  
 +\underline{I}_{23} = {{\underline{U}_{23}}\over{\underline{Z}_{23}^\phantom{O}}} \quad , \quad  
 +\underline{I}_{31} = {{\underline{U}_{31}}\over{\underline{Z}_{31}^\phantom{O}}} \end{align*} </WRAP>
   - Also here, the **true power** can be calculated by adding up the true power of each phase. The faster way (as shown before) is to add up the (complex) apparent power.   - Also here, the **true power** can be calculated by adding up the true power of each phase. The faster way (as shown before) is to add up the (complex) apparent power.
-  - The **apparent power** $\underline{S}_x$ here is again the sum the (complex) apparent power for each string: \\ \begin{align*} \underline{S} &= \underline{U}_{12} \cdot \underline{I}_{12}^* + \underline{U}_{23} \cdot \underline{I}_{23}^* + \underline{U}_{31} \cdot \underline{I}_{31}^*  \end{align*}  \\ Since $\underline{U}_{12}$, $\underline{U}_{23}$, and $\underline{U}_{31}$ are given by the three-phase network, a further simplification lead to: \\ \begin{align*} \boxed{\underline{S} =  P + j \cdot Q = U_{\rm L}^2 \cdot \left( {{1}\over{\underline{Z}_{12}^* }} +  {{1}\over{\underline{Z}_{23}^* }} +  {{1}\over{\underline{Z}_{31}^* }}\right) } \end{align*} \\ The **collective apparent power** $S_\Sigma$ here is the same as for the three-wire or four-wire connection. \\ In the Delta connection the phase currents $I_x$ have to be calculated since the formula only applies for them:  \\ \begin{align*} S_\Sigma &= \sqrt{ {{1}\over{3}} (U_{12}^2 + U_{23}^2 + U_{31}^2) } \cdot \sqrt{\sum_x I_x^2} &= U_{\rm L} \cdot \sqrt{\sum_x I_x^2}  \end{align*}   +  - The **apparent power** $\underline{S}_x$ here is again the sum the (complex) apparent power for each string: <WRAP>  
-  - The abolute **reactive power** $Q$ can be calulated by the apparent power: \\ \begin{align*} j\cdot Q &= \underline{S} - P  \end{align*}  \\ the **collective reactive power** $Q_\Sigma$ is given by the collective apparent power:  \\ \begin{align*} Q &= \sqrt{S_\Sigma^2 - P^2}  \end{align*}  +\begin{align*}  
 +\underline{S} &= \underline{U}_{12} \cdot \underline{I}_{12}^*  
 +               + \underline{U}_{23} \cdot \underline{I}_{23}^*  
 +               + \underline{U}_{31} \cdot \underline{I}_{31}^*   
 +\end{align*}  \\  
 +Since $\underline{U}_{12}$, $\underline{U}_{23}$, and $\underline{U}_{31}$ are given by the three-phase network, a further simplification lead to: \\  
 +\begin{align*}  
 +\boxed{ 
 +\underline{S} = P + {\rm j\cdot Q  
 +              = U_{\rm L}^2 \cdot \left( {{1}\over{\underline{Z}_{12}^* }}  
 +                                      +  {{1}\over{\underline{Z}_{23}^* }}  
 +                                      +  {{1}\over{\underline{Z}_{31}^* }}\right) }  
 +\end{align*} \\  
 +The **collective apparent power** $S_\Sigma$ here is the same as for the three-wire or four-wire connection. \\  
 +In the Delta connection the phase currents $I_x$ have to be calculated since the formula only applies to them:  \\  
 +\begin{align*}  
 +S_\Sigma &= \sqrt{ {{1}\over{3}} (U_{12}^2 + U_{23}^2 + U_{31}^2) } \cdot \sqrt{\sum_x I_x^2} &= U_{\rm L} \cdot \sqrt{\sum_x I_x^2}   
 +\end{align*}  </WRAP> 
 +  - The abolute **reactive power** $Q$ can be calulated by the apparent power: <WRAP>  
 +\begin{align*} {\rm j}\cdot Q &= \underline{S} - P  \end{align*}  \\  
 +the **collective reactive power** $Q_\Sigma$ is given by the collective apparent power:  \\  
 +\begin{align*} Q &= \sqrt{S_\Sigma^2 - P^2}  \end{align*}  </WRAP>
 </callout> </callout>
  
 <panel type="info" title="Example"> <panel type="info" title="Example">
 In the example, this leads to: In the example, this leads to:
-  - The phase voltages are given as \begin{align*} U_{\rm L}=\sqrt{3} \cdot 231 ~\rm V = & 400 ~\rm V = U_{12} = U_{23} = U_{31} \end{align*} \\ The phasors of the string voltages of the network are given as \\ {{drawio>ThreeWireStringPhaseVoltageFormula.svg}} +  - The phase voltages are given as <WRAP>  
-  - Based on the string voltages of the network and the given impedances the string currents $\underline{I}_{12}$, $\underline{I}_{23}$, $\underline{I}_{31}$ of the load can be calculated : \\ \begin{align*} \underline{I}_{12} &=& {{ 400 {~\rm V} \cdot\left(+{{1}\over{2}}\sqrt{3}+{{1}\over{2}} \cdot j \right)}\over{ 10~\Omega + j \cdot 2\pi\cdot 50 {~\rm Hz} \cdot 1 {~\rm mH} }} &=& 35.24 {~\rm A} + j \cdot 18.90 {~\rm A} &=& 40 {~\rm A} \quad &\angle 28.2°  \\ \underline{I}_{23} &=& {{400 \cdot j}\over{ 5~\Omega + {{1}\over{j \cdot 2\pi\cdot 50 {~\rm Hz} \cdot 100 {~\rm µF}}} }}  &=& 12.27 {~\rm A} - j \cdot 1.93 {~\rm A} &=& 12.42 {~\rm A} \quad &\angle -8.9° \\ \underline{I}_{31} &=& {{400 {~\rm V} \cdot\left(-{{1}\over{2}}\sqrt{3}+{{1}\over{2}} \cdot j \right)}\over{ 20 ~\Omega}}  &=& -17.33 {~\rm A} + j \cdot 10.00 {~\rm A} &=& 20.01 {~\rm A} \quad &\angle 150°  \end{align*} \\ By these voltages the phase currents $\underline{I}_x$ can be calculated: \\ \begin{align*} \underline{I}_{1} &=& (35.24 {~\rm A} + j \cdot 18.90 {~\rm A}) - (-17.33 {~\rm A} + j \cdot 10.00 {~\rm A}) &=& 52.57 {~\rm A} + j \cdot 8.90 {~\rm A} &=& 53.32 {~\rm A} \quad &\angle 9.6°  \\ \underline{I}_{2} &=& (12.27 {~\rm A} - j \cdot 1.93 {~\rm A}) - (35.24 {~\rm A} + j \cdot 18.90 {~\rm A} ) &=& -22.98 {~\rm A} - j \cdot 20.83 {~\rm A}  &=& -31.01 {~\rm A} \quad &\angle -137.8° \\ \underline{I}_{3} &=& (-17.33 {~\rm A} + j \cdot 10.00A) - (12.27 {~\rm A} - j \cdot 1.93A) &=& -29.59  {~\rm A}+ j \cdot 11.93  {~\rm A} &=& 31.90 {~\rm A} \quad &\angle 158.0°  \end{align*} \\ +\begin{align*}  
-  - The true power is calculated by: \\ \begin{align*} P = 231 {~\rm V} \cdot \big( 53.32  {~\rm A} \cdot \cos (0° - (9.6°))- 31.01 {~\rm A} \cdot \cos (-120° - (-137.8°)) + 31.90  {~\rm A} \cdot \cos (-240° - (+158.0°)\big) = 24.77  {~\rm kW} \end{align*} +U_{\rm L}=\sqrt{3} \cdot 231 ~\rm V  
-  - The apparent power $\underline{S}$ is: \\ \begin{align*} \underline{S} &= \underline{U}_{13} \cdot \underline{I}_1^* + \underline{U}_{23} \cdot \underline{I}_2^* &=& 400 {~\rm V} \cdot (- e^{-j \cdot 7/6 \pi} \cdot (52.57  {~\rm A} - j \cdot 8.90  {~\rm A} )   e^{- j \cdot 3/6 \pi} \cdot (-22.98 {~\rm A} + j \cdot 20.83 {~\rm A}) ) &= 24.77  {~\rm kW} - j \cdot 4.41  {~\rm kVAr} \\ &= \underline{U}_{12} \cdot \underline{I}_1^* + \underline{U}_{32} \cdot \underline{I}_3^* &=& 400 {~\rm V} \cdot (e^{j \cdot 1/6 \pi} \cdot (52.57  {~\rm A} - j \cdot 8.90  {~\rm A}) - e^{-j \cdot 3/6 \pi} \cdot (-29.59 {~\rm A} - j \cdot 11.93 {~\rm A})) &= 24.77  {~\rm kW} - j \cdot 4.41  {~\rm kVAr} \\ &= \underline{U}_{21} \cdot \underline{I}_2^* + \underline{U}_{31} \cdot \underline{I}_3^* &=& 400 {~\rm V} \cdot (- e^{j \cdot 1/6 \pi} \cdot (-22.98 {~\rm A} + j \cdot 20.83 {~\rm A}) + e^{- j \cdot 7/6 \pi} \cdot (-29.59 {~\rm A} - j \cdot 11.93 {~\rm A})) &= 24.77  {~\rm kW} - j \cdot 4.41  {~\rm kVAr} \\ & = 25.16  {~\rm kVA} \quad \angle -10.09°\end{align*}  \\ The collective apparent power is: \\ \begin{align*} S_\Sigma &= U_{\rm L} \cdot \sqrt{\sum_x I_x^2} \\ &= \sqrt{3} \cdot 231 {~\rm V} \cdot \sqrt{(53.32 {~\rm A})^2+(31.01 {~\rm A})^2+(31.90 {~\rm A})^2} = 27.78  {~\rm kVA} \end{align*}   +         = & 400 ~\rm V  
-  - The reactive power is: \begin{align*} Q &= |\underline{S} - P| =  -4.41 {~\rm kVAr} \\  \end{align*} \\ The collective reactive power is: \\ \begin{align*} Q_\Sigma &=\sqrt{(27.78  {~\rm kVA})^2 - (24.77  {~\rm kW})^2} =  12.59 {~\rm kVAr} \\  \end{align*}+         = U_{12} = U_{23} = U_{31}  
 +\end{align*} \\  
 +The phasors of the string voltages of the network are given as \\  
 +{{drawio>ThreeWireStringPhaseVoltageFormula.svg}}</WRAP> 
 +  - Based on the string voltages of the network and the given impedances the string currents $\underline{I}_{12}$, $\underline{I}_{23}$, $\underline{I}_{31}$ of the load can be calculated: <WRAP>  
 +\begin{align*}  
 +\underline{I}_{12} &=& {{ 400 {~\rm V} \cdot\left(+{{1}\over{2}}\sqrt{3}+{{1}\over{2}} \cdot {\rm j\right)}\over{ 10~\Omega + {\rm j\cdot 2\pi\cdot 50 {~\rm Hz} \cdot 1 {~\rm mH} }}  
 +                   &=& 35.24 {~\rm A} + {\rm j\cdot 18.90 {~\rm A} &=& 40 {~\rm A} \quad &\angle 28.2°  \\  
 +\underline{I}_{23} &=& {{400 \cdot {\rm j}}\over{ 5~\Omega + {{1}\over{{\rm j\cdot 2\pi\cdot 50 {~\rm Hz} \cdot 100 {~\rm µF}}} }}   
 +                   &=& 12.27 {~\rm A} - {\rm j\cdot 1.93 {~\rm A} &=& 12.42 {~\rm A} \quad &\angle -8.9° \\  
 +\underline{I}_{31} &=& {{400 {~\rm V} \cdot\left(-{{1}\over{2}}\sqrt{3}+{{1}\over{2}} \cdot {\rm j\right)}\over{ 20 ~\Omega}}   
 +                   &=& -17.33 {~\rm A} + {\rm j\cdot 10.00 {~\rm A} &=& 20.01 {~\rm A} \quad &\angle 150°  \end{align*} \\  
 +By these voltages the phase currents $\underline{I}_x$ can be calculated: \\  
 +\begin{align*}  
 +\underline{I}_{1} &=& ( 35.24 {~\rm A} + {\rm j\cdot 18.90 {~\rm A}) - (-17.33 {~\rm A} + {\rm j\cdot 10.00 {~\rm A}) &=&  52.57 {~\rm A} + {\rm j\cdot 8.90 {~\rm A}  
 +                  &=& 53.32 {~\rm A} \quad &\angle 9.6°  \\ 
 +\underline{I}_{2} &=& ( 12.27 {~\rm A} - {\rm j\cdot  1.93 {~\rm A}) - ( 35.24 {~\rm A} + {\rm j\cdot 18.90 {~\rm A}) &=& -22.98 {~\rm A} - {\rm j\cdot 20.83 {~\rm A}   
 +                  &=& -31.01 {~\rm A} \quad &\angle -137.8° \\ 
 +\underline{I}_{3} &=& (-17.33 {~\rm A} + {\rm j\cdot 10.00 {~\rm A}) - ( 12.27 {~\rm A} - {\rm j\cdot  1.93 {~\rm A}) &=& -29.59 {~\rm A} + {\rm j\cdot 11.93 {~\rm A}  
 +                  &=& 31.90 {~\rm A} \quad &\angle 158.0°   
 +\end{align*} \\</WRAP> 
 +  - The true power is calculated by: <WRAP>  
 +\begin{align*}  
 +P = 231 {~\rm V} \cdot \big( 53.32  {~\rm A} \cdot \cos (   0° - (9.6°)        ) 
 +                            - 31.01 {~\rm A} \cdot \cos (-120° - (-137.8°)      
 +                            + 31.90 {~\rm A} \cdot \cos (-240° - (+158.0°) \big)  
 +  = 24.77  {~\rm kW} \end{align*}</WRAP> 
 +  - The apparent power $\underline{S}$ is: <WRAP>  
 +\begin{align*}  
 +\underline{S} &= \underline{U}_{13} \cdot \underline{I}_1^* + \underline{U}_{23} \cdot \underline{I}_2^*  
 +              &=& 400 {~\rm V} \cdot (- {\rm e}^{-{\rm j\cdot 7/6 \pi} \cdot ( 52.57 {~\rm A} - {\rm j\cdot  8.90 {~\rm A}) +  
 +                                        {\rm e}^{-{\rm j\cdot 3/6 \pi} \cdot (-22.98 {~\rm A} + {\rm j\cdot 20.83 {~\rm A}))  
 +              &= 24.77  {~\rm kW} - {\rm j\cdot 4.41  {~\rm kVAr} \\  
 +              &= \underline{U}_{12} \cdot \underline{I}_1^* + \underline{U}_{32} \cdot \underline{I}_3^*  
 +              &=& 400 {~\rm V} \cdot (  {\rm e}^{ {\rm j\cdot 1/6 \pi} \cdot ( 52.57 {~\rm A} - {\rm j\cdot  8.90 {~\rm A}) -  
 +                                        {\rm e}^{-{\rm j\cdot 3/6 \pi} \cdot (-29.59 {~\rm A} - {\rm j\cdot 11.93 {~\rm A}))  
 +              &= 24.77  {~\rm kW} - {\rm j\cdot 4.41  {~\rm kVAr} \\  
 +              &= \underline{U}_{21} \cdot \underline{I}_2^* + \underline{U}_{31} \cdot \underline{I}_3^*  
 +              &=& 400 {~\rm V} \cdot (- {\rm e}^{ {\rm j\cdot 1/6 \pi} \cdot (-22.98 {~\rm A} + {\rm j\cdot 20.83 {~\rm A}) +  
 +                                        {\rm e}^{-{\rm j\cdot 7/6 \pi} \cdot (-29.59 {~\rm A} - {\rm j\cdot 11.93 {~\rm A}))  
 +              &= 24.77  {~\rm kW} - {\rm j\cdot 4.41  {~\rm kVAr} \\  
 +              & = 25.16  {~\rm kVA} \quad \angle -10.09°\end{align*}  \\  
 +The collective apparent power is: \\  
 +\begin{align*}  
 +S_\Sigma &= U_{\rm L}                   \cdot \sqrt{\sum_x I_x^2} \\  
 +         &= \sqrt{3} \cdot 231 {~\rm V} \cdot \sqrt{(53.32 {~\rm A})^2+(31.01 {~\rm A})^2+(31.90 {~\rm A})^2}  
 +          = 27.78  {~\rm kVA} \end{align*}  </WRAP> 
 +  - The reactive power is: <WRAP>  
 +\begin{align*} Q &= |\underline{S} - P| =  -4.41 {~\rm kVAr} \\   
 +\end{align*} \\  
 +The collective reactive power is: \\  
 +\begin{align*} Q_\Sigma &=\sqrt{(27.78  {~\rm kVA})^2 - (24.77  {~\rm kW})^2} =  12.59 {~\rm kVAr} \\   
 +\end{align*}</WRAP>
  
 <WRAP> <imgcaption imageNo17 | Load in Delta connection ></imgcaption>{{drawio>PhasorDelta}.svg}} </WRAP> <WRAP> <imgcaption imageNo17 | Load in Delta connection ></imgcaption>{{drawio>PhasorDelta}.svg}} </WRAP>
Zeile 612: Zeile 869:
 \end{align*} \end{align*}
  
-For the **series circuit**, the impedances add up like: $R_s + j\cdot X_{Ls} = \underline{Z} $, and $R_s = |\underline{Z}| \cos\varphi$ such as $X_{Ls} = |\underline{Z}| \sin\varphi$.+For the **series circuit**, the impedances add up like: $R_s + {\rm j}\cdot X_{Ls} = \underline{Z} $, and $R_s = |\underline{Z}| \cos\varphi$ such as $X_{Ls} = |\underline{Z}| \sin\varphi$.
 Therefore: Therefore:
 \begin{align*}  \begin{align*} 
Zeile 621: Zeile 878:
  
  
-For the **parallel circuit**, the impedances add up like ${{1}\over{R_p}} + {{1}\over{j\cdot X_{Lp}}}= {{1}\over{\underline{Z}}} $. \\+For the **parallel circuit**, the impedances add up like ${{1}\over{R_p}} + {{1}\over{{\rm j}\cdot X_{Lp}}}= {{1}\over{\underline{Z}}} $. \\
 The easiest thing is here to use the formulas of $R_s$ and $X_{Ls}$ from before: The easiest thing is here to use the formulas of $R_s$ and $X_{Ls}$ from before:
  
 \begin{align*}  \begin{align*} 
-{{1}\over{R_p}} + {{1}\over{j\cdot X_{Lp}}} &=& {{1}\over{R_s + j\cdot X_{Ls}}} \\ +{{1}\over{R_p}} + {{1}\over{{\rm j}\cdot X_{Lp}}} &=& {{1}\over{R_s + {\rm j}\cdot X_{Ls}}} \\ 
-{{1}\over{R_p}} - j {{1}\over{X_{Lp}}}      &=& {{R_s - j\cdot X_{Ls}}\over{R_s^2 + X_{Ls}^2}} \\ +{{1}\over{R_p}} - {\rm j{{1}\over{X_{Lp}}}      &=&         {{R_s - {\rm j}\cdot X_{Ls}}\over{R_s^2 + X_{Ls}^2}} \\ 
-                                            &=& {{Z \cdot \cos \varphi - j\cdot Z \cdot \sin \varphi }\over{Z^2}}\\ +                                                  &=& {{Z \cdot \cos \varphi - {\rm j}\cdot Z \cdot \sin \varphi }\over{Z^2}} \\ 
-                                            &=& {{\cos \varphi - j \cdot \sin \varphi }\over{Z}}\\+                                                  &=& {        {\cos \varphi - {\rm j\cdot \sin \varphi }       \over{Z}} \\
 \end{align*} \end{align*}
  
Zeile 724: Zeile 981:
  
 \begin{align*}  \begin{align*} 
-\underline{I} &= I_R + j \cdot I_L \\ +\underline{I} &= I_R                 {\rm j\cdot I_L \\ 
-              &= I \cdot \cos\varphi - j \cdot I \cdot \sin\varphi +              &= I \cdot \cos\varphi - {\rm j\cdot I \cdot \sin\varphi 
 \end{align*} \end{align*}
  
Zeile 837: Zeile 1094:
 Q &= \Re (U) \cdot \Im (I) \\  Q &= \Re (U) \cdot \Im (I) \\ 
   &= U \cdot {{U}\over{X}} \\    &= U \cdot {{U}\over{X}} \\ 
-  &= {{U^2}\over{X}} \\ +  &      {{U^2}\over{X}} \\ 
 \end{align*} \end{align*}
  
Zeile 895: Zeile 1152:
 \begin{align*}  \begin{align*} 
 \underline{S}_{\rm net} &=& \underline{S}_1               &+& \underline{S}_2 \\ \underline{S}_{\rm net} &=& \underline{S}_1               &+& \underline{S}_2 \\
-                        &=& P_1 + j \cdot Q_1             &+& P_2 + j \cdot Q_2 \\ +                        &=& P_1 + {\rm j\cdot Q_1       &+& P_2 + {\rm j\cdot Q_2 \\ 
-                        &=& P_1 + P_2                     &+& j \cdot (Q_1 + Q_2) \\  +                        &=& P_1 + P_2                     &+& {\rm j\cdot (Q_1 + Q_2) \\  
-                        &=& 2.7 {~\rm kW} + 3.8 {~\rm kW} &+& j \cdot (1.4 {~\rm kVAr} + 3.2 {~\rm kVAr}) \\  +                        &=& 2.7 {~\rm kW} + 3.8 {~\rm kW} &+& {\rm j\cdot (1.4 {~\rm kVAr} + 3.2 {~\rm kVAr}) \\  
-                        &=& 6.5 {~\rm kW}                 &+& j \cdot 4.6 {~\rm kVAr} \\  +                        &=& 6.5 {~\rm kW}                 &+& {\rm j\cdot 4.6 {~\rm kVAr} \\  
-                        &=& P_{\rm net}                   &+& j \cdot Q_{\rm net} \\ +                        &=& P_{\rm net}                   &+& {\rm j\cdot Q_{\rm net} \\ 
 \end{align*} \\ \end{align*} \\
  
 As a complex value in Euler representation: As a complex value in Euler representation:
 \begin{align*}  \begin{align*} 
-\underline{S}_{\rm net} &=& \sqrt{P_{\rm net}^2    +  Q_{\rm net}^2      } &\cdot& e^{j \cdot \arctan ({{Q_{\rm net}}\over{P_{\rm net}}})} \\ +\underline{S}_{\rm net} &=& \sqrt{P_{\rm net}^2    +  Q_{\rm net}^2      } &\cdot& {\rm e}^{{\rm j\cdot \arctan ({{Q_{\rm net}}\over{P_{\rm net}}})} \\ 
-                            \sqrt{(6.5 {~\rm kW})^2+  (4.6 {~\rm kVAr})^2} &\cdot& e^{j \cdot \arctan ({{4.6        }\over{6.5    }})} \\ +                            \sqrt{(6.5 {~\rm kW})^2+  (4.6 {~\rm kVAr})^2} &\cdot& {\rm e}^{{\rm j\cdot \arctan ({{4.6        }\over{6.5    }})} \\ 
-                                   8.0 {~\rm kVA}                          &\cdot& e^{j \cdot 35°} \\+                                   8.0 {~\rm kVA}                          &\cdot& {\rm e}^{{\rm j\cdot 35°} \\
 \end{align*}  \end{align*} 
 </collapse><button size="xs" type="link" collapse="Loesung_7_2_1_2_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_7_2_1_2_Endergebnis" collapsed="true">  </collapse><button size="xs" type="link" collapse="Loesung_7_2_1_2_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_7_2_1_2_Endergebnis" collapsed="true"> 
 \begin{align*}  \begin{align*} 
-\underline{S}_{\rm net} &=& 6.5 {~\rm kW}+ j \cdot 4.6 {~\rm kVAr} \\  +\underline{S}_{\rm net} &=& 6.5 {~\rm kW} + {\rm j\cdot 4.6 {~\rm kVAr} \\  
-                        &=& 8.0 {~\rm kVA} \cdot e^{j \cdot 35°} \\+                        &=& 8.0 {~\rm kVA} \cdot {\rm e}^{{\rm j\cdot 35°} \\
 \end{align*}  \end{align*} 
 </collapse>\\ </collapse>\\