Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Letzte Überarbeitung Beide Seiten der Revision
electrical_engineering_2:polyphase_networks [2023/06/12 10:37]
ott
electrical_engineering_2:polyphase_networks [2024/06/18 02:38]
mexleadmin [Excercises]
Zeile 1: Zeile 1:
-====== 7Polyphase Networks and Power in AC Circuits ======+====== 7 Polyphase Networks and Power in AC Circuits ======
  
 emphasizing the importance of power considerations emphasizing the importance of power considerations
Zeile 34: Zeile 34:
 Out of the last formula we derived the following instantaneous voltage $u(t)$  Out of the last formula we derived the following instantaneous voltage $u(t)$ 
 \begin{align*}  \begin{align*} 
-u(t) &-\hat{U}  \cdot \sin (\omega t + \varphi_0) \\  +u(t) &= \hat{U}  \cdot \sin (\omega t + \varphi_0) \\  
-     & \hat{U}  \cdot \sin (\omega t + \varphi'_0) \\  +     &= \sqrt{2} U\cdot \sin (\omega t + \varphi_0) \\ 
-     &= \sqrt{2} U\cdot \sin (\omega t + \varphi'_0) \\ +
 \end{align*} \end{align*}
  
Zeile 201: Zeile 200:
 Similarly, the currents and voltages can be separated into active, reactive, and apparent values. </callout> Similarly, the currents and voltages can be separated into active, reactive, and apparent values. </callout>
  
-Based on the given formulas the three types of power are connected with each other. Since the apparent power is given by $S=U\cdot I$, the active power $P = U\cdot I \cdot \sin \varphi = S \cdot \sin \varphi $ and the reactive power $Q = S \cdot \cos \varphi $, the relationship can be shown in a triangle (see <imgref imageNo02>).+Based on the given formulas the three types of power are connected with each other. Since the apparent power is given by $S=U\cdot I$, the active power $P = U\cdot I \cdot \cos \varphi = S \cdot \cos \varphi $ and the reactive power $Q = S \cdot \sin \varphi $, the relationship can be shown in a triangle (see <imgref imageNo02>).
  
 <WRAP> <imgcaption imageNo02 | Power Triangle of active, reactive and apparent power></imgcaption> {{drawio>powertriangle.svg}} </WRAP> <WRAP> <imgcaption imageNo02 | Power Triangle of active, reactive and apparent power></imgcaption> {{drawio>powertriangle.svg}} </WRAP>
Zeile 411: Zeile 410:
 The phase currents are given as the currents through a single line: $I_1$, $I_2$, $I_3$. \\  The phase currents are given as the currents through a single line: $I_1$, $I_2$, $I_3$. \\ 
 The potential of the star point is called **neutral** $\rm N$ </WRAP> The potential of the star point is called **neutral** $\rm N$ </WRAP>
-  * **Star-voltages** $U_\rm Y$ (alternatively: phase-to-neutral voltages, line-to-neutral voltages, in German: //Sternspannungen//): the voltages of the lines can be also measured or used referring to the neutral potential.+  * **Star Voltages** $U_\rm Y$ (alternatively: phase-to-neutral voltages, line-to-neutral voltages, in German: //Sternspannungen//): the voltages of the lines can be also measured or used referring to the neutral potential.
 <WRAP> <imgcaption imageNo13 | Example of an Three-Phase System></imgcaption> {{drawio>ExampleThreePhaseSystem.svg}} </WRAP> <WRAP> <imgcaption imageNo13 | Example of an Three-Phase System></imgcaption> {{drawio>ExampleThreePhaseSystem.svg}} </WRAP>
  
Zeile 434: Zeile 433:
 The phase voltage is therefore ${{1}\over{\sqrt{3}}} \cdot 400~\rm V \approx 230~\rm V$. The following two simulations show these voltages. The phase voltage is therefore ${{1}\over{\sqrt{3}}} \cdot 400~\rm V \approx 230~\rm V$. The following two simulations show these voltages.
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQAJRA8GeBuCSSeOBpzDSo4dpzkZobFMrCa8kAhnUEE5YtjbDR4yQxai5nO5wWqQ6zdrXQwCMFoYMNhw2cgIcCwF5PGt7WiwxSFJwehAEEAANKINYpztrJJAGfPSATWyYsAw89PiiwvSAOQEAB3rksAZk+WTHFQhIVvdbfJ7wLv6oIbG+uSL8iAGKtIx04vTkRhKQZra2BHS+yjWFlUG9g-Hk4-nas6GQkY3V28nBgA8QahA8Nnaf67gZIABQAFgBDADOXAAOpCAGoAewANgAXcEAcy4kIEnxwpE4eAiphiqVqyQAyuiAE5wpFozHY5ZVGopRj2dIAVQAdgBjRHc7lcXmorgAEwELNybOsEhlTgU8CV8El1Wl61lT2U8nAyuVVjEcqlYlIHTVLjSFqtmgNNn+Ju6hQt9itkREYjY7M4HsYcqcuvg7GULhtAHdrJ6ivYfVJJIMWBEeCwFJ1RL5DkRlDgAPpgbOQbPvUhgSBijDZtj5nzZvjZhi5uD5utNksFwbhviXDV8CYawYYtNdyOdtZ+qYd9OvEdFSPtwcndKGrVz6ePArdU3j0R+LaLojdfIrydIBJjKWDABumqnZ-NKg4ww0WiQ2tgFBwSDYJYYH5on4iMCWFeS43oUXTJK4D4eM+ygID4poEJA8gIGQRhIJAfyAQIwF2t2+6vJBaiBJ4L7WpY0Rpr2+Q8CerxNMsSZVFOBwHhsIAADKCBR060T2yQEmkHEMAxk5rnx7hUIJ7E4MsZ5UbUqbpOxwkUTMOoajgmZKTJFFzH2dEcYI4Y3GwEyepwpkQQI4b4ZZKzpHZ5wSdctG2RMixTG0NwsfZ7Dufc4b8JIPneaYnnsGqyYRRZ-lLG0YybP8O5vNZ4CKbRCW0XOQWWgq1ysE5OU+UVtEeYVimsEVYVlcyilhZwIVCbVwVZWktHac1uWwawSlcTkOWOX5gLNOGCVMQlBWpZlWD4Yl2WpnZblWaNDSsOZXVzrN7VzHNqWhckX7BfVyxrhp6nbJxyz7LUZlqkVTUUddwwWWqmlYB1ABGDiSAJXQvvscYCF9OCFMWICrH8+wAQIQA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQAJRA8GeBuCSSeOBpzDSo4dpzkZobFMrCa8kAhnUEE5YtjbDR4yQxai5nO5wWqQ6zdrXQwCMFoYMNhw2cgIcCwF5PGt7WiwxSFJwehAEEAANKINYpztrJJAGfPSATWyYsAw89PiiwvSAOQEAB3rksAZk+WTHdxVIVvdbfJ7wLv6IQbaxvrki-IipirSMdOL05EYSkGa2tgR0vsp1xYGhg9qJk4Wj87aQkc2128moAQAPEGoQPDZ237JWrJAAKAAsAIYAZy4AB0oQA1AD2ABsAC4QgDmXChn3cpE4eAiphiqWBIAAyhiAE7w5HorE4lZVGopRj2dIAVQAdgBjJHc7lcXlorgAEwELNybOsEhlTgU8CV8El1WlG1lT2U8nAyuVVjEcqlYlIHTVLjSFqtmgNNgBJu6hQt9itkREYjY7M4HsYcqcuvg7GULhtAHdrJ6ivYfVJJIMWBEeCwFJ1RL4jkRlDgAPpgbOQbMfUhgSBijDZtj5nzZvjZhi5uD5utNksFwbhviHV58CYawaYtNdhiRzvrP3vDvp7tT4dYduD07pQ1a+ej9xsGRjLrJVd+bZLojdfKrqdIBJjKWDABumu7F-NKg4ww0WiQ2tgFBwSDYJYYX5o34RDAlg3sud6FNuOhuB4r7KAgPimgQkDyAgZBGEgkD-MBAigXaGqyFQryuE+MFeMGNrRGmvb5DwZ6vE0KxJlU3aHEemwgAAMoIlFrnRPbJASaScQwjFTo8VG9IR6QcTgKwXtRtSptJImUbMOoajgmbSbJlHzH29GcYI4Y3BuySepwpkTu4hGWSZEzTNZQJ0Ye7ATEs7xtDcrGrOklnufO-CSN5XmmB57Bqsm4UWW59wAlscXMf5AjhoFaR0WM8UBUprAZawDmpd5BXObFBWsAVoVJZR5U7mkoXKcySl0Zw8XaQ1QV5ZazWGW1rk1bZuzJQljANHlg0Zc5UlNYNqV+TZ9ljSNFkRaN4YuS18yZYNIVmUpoWDLpG6vH0GrSdxOSXOMZlqgVwkrBdfTme4WmcbJABGDiSIJXRvgccYCO9OCFMWIBrP8BxAQIQA noborder}} </WRAP>
  
-<WRAP >{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQADxDUQeNiAaRS42QnCyACgAsAhgGcuAHQ0A1APYAbAC5qA5lw3CQOUpzw4QCUnnFYFYWQGUzAJ11DUwsrAQB3ED4EBQYGBT4GWViFSAFzSLBoqTYsKJi8BigocIys5NKYnOKIvKk4yIYCupSS2pw2Qp5pJNJZVJqEMEZ6niIk+v6KkCRc7vAMTlSANwam8q6ZecXwdk4cBgxoNhQihlgKHCQ2MEgGS5orpxg2ARWutZG5xL6djlsDo4nTgIaBeVxIW6IMgYS6QSTPV6rQrrMbNIoQP77Q7HJBFRZHATSNwJcbxGZohQAOUJkGJg2G8WipOcIAAMoIiVNySTRMC2QwacTMgp2p0wIlbFQWaycCVKDFeuwFlJFZNUd9nBgFX0BAAHSVJKrqxUQCCpfXyqSbS0a03VcDiq3yLVO4r6nKcIacD0q2R282uhhVOa0LD+kr8ZHBzZBrCTSNbV1et0O5GbBOxnZmvWpxMZ9M7VKc-M-OYKVkC4uOzOcTPl2VVwrJz3K8sc2m5jW1xVUkoh+hJ5WTL5GqU1iPVxXGnUREPKn3NkrqqoIfbZONyl1za5pnUGKQeU6IVwgLX4s22bKnQqcVSaHT6YxmSwCfdeFm149YM-YO1OMC4rWF6+GoASPsEljWEAA noborder}} </WRAP>+<WRAP >{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQADxDUQeNiAaRS42QnCyACgAsAhgGcuAHQ0A1APYAbAC5qA5lw3CQOUpzw4QCUnnFYFYWQGUzAJ11DUwsrAQB3ED4EBQYGBT4GWViFSAFzSLBoqTYsKJi8BigocIys5NKYnOKIvKk4yIYCupSS2pw2Qp5pJNJZVJqEMEZ6niIk+v6KkCRc7vAMTlSANwam8q6ZecXwdk4cBgxoNhQihlgKHCQ2MEgGS5orpxg2ARWutZG5xL6djlsDo4nTgIaBeVxIW6IMgYS6QSTPV6rQrrMbNIoQP77Q7HJBFRZHATSNwJcbxGZohQAOUJkGJg2G8WipOcIAAMoIiVNySTRMC2QwacTMgp2p0wIlbFQWaycCVKDFeuwFlJFZNUd9nBgFX0BAAHSVJKrqxVOCCpfXyqSbS0a03VcDiq3yLVO4r6nKcIacD0q2R282uhhVOa0LD+kr8ZHBzZBrCTSNbV1et0O5GbBOx2w7AMJ5MZzbhzn5n5zBSsgVFx2ZziZsuyyuFZOe5Vljm01O+06KqklEP0JPKyZfI1S6sRqsm0eq3vp5U+psldVVBD7bJxuUuubXNM6gxSDynRCuEBa-FmrNB06FTiqTQ6fTGMyWAR7rwsmtHrCn7AQCCm3E1uevhqAED7BJY1hAA noborder}} </WRAP>
  
 ==== 7.2.3 Load and Power in Three-Phase Systems ==== ==== 7.2.3 Load and Power in Three-Phase Systems ====
Zeile 467: Zeile 466:
 </panel> </panel>
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlczMtQ28DCkFyj19LtIjtdm87EjK-WKEXDNdZQqe+eW9ah0l3ciMJFxywwyQG6OlE1MgDHtiO5fXY2KTyis3wy+L59Mpn3dcmx9PS5sH4zf6CI64GJ9JrJNRHNQKAAyDHBkEhsN+ULh7CwSLAqPRsQ2JCSROkaRUiKEEKxFVJuSOKgAcmdbvDXq4SSVxmzrrwwOxpvczmTivzBXSSgAlWkvcRvLl-DhcQoYaCUBTpbDsQQyjEzeWMJpKzjgBhqjVQJywchgJDsaiQAoESTsCAwHV6slXfYYQ73Eam1XqxU3aCeEj4J2IUgYO2QHwekUpOWA97JuEwwELDOYkHC8bmhTrJaSh6DOHDCtls5F1RJa7pwvQ5SZ5TlmY+kAkOEF1qS3jXYq1IJia69faN0OOwSjtvdu5qLg6gDGC6uanijPSsHg6H36A8vRDhAwVztTFw7iOI+7va4PbNWqOgnMY-mrHfi6tMDgzBo6rmngLikLgFBIIg3Jfi8bjEpqpTzrBlzGgh96KGh5ZDpU1TwdkOF3jWeH4Uhw6CHg+xzMhAyFIhIxCOMNFUVUTG1ORswUnKjEwXRrIKkklFNrMVz1qW6ZseKQoUcJXabPRQloT0TRdqxuCTiqjKDiq7Q8eJjFigKbTLDxDHCWKdakeMQ4aeOj4qQ+T4LsUslkapBGFA+xE8aIcgUIoUkdAUvhqFoeiGLoADCACuQRBNwAB2lgON5JA+G4ECeOllBBSAiKmNoAAmRgAJZxUYADqACeYXhaYcVxdwK6WEVtVGAYBhxSVAAqmixXwIX6EYABipjRbwZVFbFRj+BVuiWNwAC2bVxZkRWWJoU2WEEJU2EYUUxfFiWOHIkAdBgPj8m8WXLGoACSR12qluAQPyj60Li0jLPdBCXO4L2MAwPjLMWX1SEw-HkJctDZXd3l2pC5rnRelxXaoIAw7MSDMAwT2zFy2PvdQCj4rDSCQoU6JI2AYBcNdaNff+Aq4wzCIfSALLeTS7keBBZoQED4Ds04vTNM9TBFNQBNqAAqkdSjYgMTCMOwgOozLHMCJckzc8WZ6+MWgs9C0TD7K6kN86z1AG0ooOQKLUNHJLIAy4WTQ0ArSl9iCwJpoqZzZt82Yod57ApUCSTsDjNK02rjxZUwzATG6kMKPzbhHTi2LosrEDmjTrMFOnocA-sEc50n0dHQgYE-bICBazM-M0JXmM-QMVegwD2Uy6Y0jm-MiCRiAsQ7p04CKFaUhcP1YVhNYdiCD3Kv93EWDD9gmwQFg9lcIE2ghCYFhz5EPe+ZqLCQKTQ+fg60DTAuvl82flR85PLBSBAErLkUGg6ANEXRbFBKDggA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlRDMtQ28DCkFyj19LuDSJdm87EjK-WKEXDNdZQqe+eW98aOLcsMMJFzbjJAbnaUTUyC7+8iMe2Nik8orYteqClsPFyln07cdJd0fBhsb4XJp-WpA3AxPpNZJqIFqBQAGQYgkh0PhtzhF3YWGRYDRkCh2KeJLSKiRQnR2OKNKBKgAcqcXgjnsMnrVxiysWB2D8MuNYtUkry2m9BAAlDGvGLskhvUaccAMDDQSgK9LQdiS6UzcQ7JpcZhKwqq9VQJywchgJDsaiQAoESTsCAwbVS7GXWU3dKKrimtXyi1yaCeEj4B2IUgYG2QHxu05CmUgjmJmEDQGGtOY-aA26cpafNQ9crFAuDeHDCsVcXjFXLIO8W6puvpkDwrN1ppekg5u49MGVJv+mqCIJiW69fbNoNG2rjjvKTFqLjagDG7Yuvc3hV9MHgkHQR-QHl6gcIGF2NqYuHcQPn7b7293FqBgnME-mrE-W5X2DgzA0GqKp4C4pC4BQSCIP2M7LLsMoFouihIYhfZuH25a-JUwp3Dhz6jtk+FwThtR4PscyggMhRIcwtGnNRlFVIxpG4OR5KkgxTy0dIzJyiK7GzvR8GkvWCGCGRsx8lu5HwV63FCOMDFegO-IlBJw7KtOI7LKMQjqQxtKijWuk8Yp8G0qJZanL89IabsK7iaxO70jh8mOVwz4ua5umOHIFCKDJtEFL4ahaHohi6AAwgArkEQTcAAdpYDiiE2PhuB0VDSJQIUgEipjaAAJkYACWCVGAA6gAnhFkWmAlCXcGulglfVRgGAYCVlQAKpo8V8GF+hGAAYqYsW8BVJXxUY-hVboljcAAth1CWZCVliaDNlhBGVNhGDFcWJclvmsLRGA+LwNquDlDYgAAkr5NrpbgECXdutB4tIyyPQQFzuG9jAMD4ywKKiqU2lITAiuQFy0LlD3g0gUIqhd14XDdqj3T9zAMC9sxBrjn3UAoBKI1ChTEmjYBgFwt0I7MSCAby+NM4iX0gEyqXoi+-BQcqEAg+AnNOL0zSvUwRTUETagAKq+Uo8JST0Us4sDmNy1zAg4rIkig5evig8LyvTPaHi2rDAvs9QRtKJDkDi3DQLSyActdpLAwzF65aAsCHwtvc5zrAH0xZql7AkD4QJJOwePordGv3DlTDMBMLqwwogtuL5uKK8S7BpyqtPswU2cRziuax2n8cnRBf2yAgkyMYLNAnYzf0DAg+B-Wrfhy6Y0iW-MiDhiAsSap0IwtFwUhcINEVhNYdiCP3atD3EWBj9g3EQFgHkWoE2ghCYFiL5E-f+QqrBI6P352tA0ybv5AuXyTLAz2-IxSauRQaDoQ1RbFeKSUHBAA noborder}} </WRAP>
  
 <callout title="Voltages - Currents - True Power - Apparent and Reactive Power"> <callout title="Voltages - Currents - True Power - Apparent and Reactive Power">
Zeile 541: Zeile 540:
  
 In the case of a symmetric load, the situation and the formulas get much simpler: In the case of a symmetric load, the situation and the formulas get much simpler:
-  - The **phase-voltages** $U_\rm L$ and star-voltages $U_{\rm Y} = U_{\rm S}$ are equal to the asymmetric load: $U_{\rm L} = \sqrt{3}\cdot U_{\rm S}$.+  - The **phase-voltages** $U_\rm L$ and star-voltages $U_{\rm Y} = U_{\rm S}$ are related by: $U_{\rm L} = \sqrt{3}\cdot U_{\rm S}$ (equal to the asymmetric load).
   - For equal impedances the absolute value of all **phase currents** $I_x$ are the same: $|\underline{I}_x|= |\underline{I}_{\rm S}| = \left|{{\underline{U}_{\rm S}}\over{\underline{Z}_{\rm S}^\phantom{O}}} \right|$. \\ Since the phase currents have the same absolute value and have the same $\varphi$, they will add up to zero. Therefore there is no current on the neutral line: $I_{\rm N} =0$   - For equal impedances the absolute value of all **phase currents** $I_x$ are the same: $|\underline{I}_x|= |\underline{I}_{\rm S}| = \left|{{\underline{U}_{\rm S}}\over{\underline{Z}_{\rm S}^\phantom{O}}} \right|$. \\ Since the phase currents have the same absolute value and have the same $\varphi$, they will add up to zero. Therefore there is no current on the neutral line: $I_{\rm N} =0$
   - The **true power** is three times the true power of a single phase: $P = 3 \cdot U_{\rm S} I_{\rm S} \cdot \cos \varphi$. \\ Based on the line voltages $U_{\rm L}$, the formula is $P = \sqrt{3} \cdot U_{\rm L} I_{\rm S} \cdot \cos \varphi$   - The **true power** is three times the true power of a single phase: $P = 3 \cdot U_{\rm S} I_{\rm S} \cdot \cos \varphi$. \\ Based on the line voltages $U_{\rm L}$, the formula is $P = \sqrt{3} \cdot U_{\rm L} I_{\rm S} \cdot \cos \varphi$
   - The **(collective) apparent power** - given the formula above - is: $S_\Sigma = \sqrt{3}\cdot U_{\rm S} \cdot \sqrt{3\cdot I_{\rm S}^2} = 3 \cdot U_{\rm S} I_{\rm S}$. \\ This corresponds to three times the apparent power of a single phase.   - The **(collective) apparent power** - given the formula above - is: $S_\Sigma = \sqrt{3}\cdot U_{\rm S} \cdot \sqrt{3\cdot I_{\rm S}^2} = 3 \cdot U_{\rm S} I_{\rm S}$. \\ This corresponds to three times the apparent power of a single phase.
-  - The **reactive power** leads to:  $Q_\Sigma = \sqrt{S_\Sigma^2 - P^2} = 3 \cdot U_{\rm S} I_{\rm S} \cdot \sin (\varphi)$.+  - The **reactive power** leads to:  $Q_\Sigma = \sqrt{S_\Sigma^2 - P^2} = 3 \cdot U_{\rm S} I_{\rm S} \cdot \sin \varphi$.
 </callout> </callout>
  
Zeile 566: Zeile 565:
 </panel> </panel>
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEll1JSFxdX7FdTUAZU20AEyMAZWsAJyMzK1t7QRsxDAQ1MAQFcRTwDC5cwQB3MXYsNIzWcHSoArFcZVKiksrIQQAHMXKaZTkueuZmZrbeYpAGMC7hhiQsPqrCoaRlUa7CLiWqwdrVDM2GLJmB9qmRki45I4ZINX3q+cWTw8Z75rn2Ba2H94PbkazvhnvroNXos2H8xtIIc0Lrgklk1pk1Bc1Ao-AxBNDYYj7giRsMUWB0ZAYTjfBlklccio-EIMTj6nSLioAHI3ZCMS4fUmzD7-U5gdh3PJzckVDL8upNQQAJUx73ERy5ng4PQYGGglAUuWw7GlsvhGHO4KVnHAqvVJE1YgYsHIYCQ7GokFGBEk7AgMB1MpxvKS5yeEJNYzVGqg7WgvhI+CdiFIGDtkG8HpuIq530Vybh4LBymeeuxwOOQpqi1+m3quaGjCOldF3N4my5AhcFrrE3BF1WRtZq3uPp9zQi0lcP08w8V0gHIzYaw7xzUXB1AGMpz3EWwxlqYPBIOhd+h2mAwNBIydHUhEETcOwFB3BIO+737hvQxdBOYhyXR3d59g4H1qDgSCkKweDsCeYGatUTbvM+6aFLOazPmsuYPiqPZFtB9SzuW1TYZUPo4fBT6VM+OF4HylLwmMiLgjMQhzNQhAjFmbY5oI5FiCscrUe8dGsgqLa8FxcFiIx0yCQ2LbNBxQkCoWnH-PJfEMUxPrdPJ0keB+ppfrWfEyTx9LinpEL0dpsHDv887sVp2GMnhCj6bZT72cRjmmY4cgUIofJMIoECOWoWh6IYugAMIAK4RBE3AAHaWA4oiOjCrgQGAJDeNQlA+P4gQhLoACWsVGAA6gAnqFYWmLFsXcIulgFdVRgGAYsVFQAKpoMV8MF+hGJ13W8CVBUxWEZW6JY3AALYtbF+QFZYmhhJYERFTYRiRdFcUJZ5rB9Bg3hCQq2WBSAACSnl2pluAQEJJBXPQPiOZdBAjG4d2MAw3iOTeL1SEwYrkCMtA5edL0wqqh12osJ2qGDohHcwDA3ZxLbI1gP3gODprEtD4BgFwp0XQjdrMIeUMkGT6VPSALII9Q3hIaaAXSAoYChJddSMVaPRZaDACql2MHJvC7Li31w4L9P-a8VojBgyiYwwHMI-ZjqccDLPUI5KucRDkC3V9U4Y5L3bgMO6n9jcBazmmUnW28uxqNmVQI2B3gXBk7Aoxip1Sw0iICEUbrAwomOuJ5xSIt7wcQKqhOs8xkcZbipze3HId+7tuA3pM7Sy2smM0LtSBI+9CD4G9Eu+CAgu6KJj30phTQQgAZto5j6J52upO9YmmtXagc3MHSVM3kEMcO9JlpKcyIZU-CN7PVrgp0K+Cq7Vp5xchsgxcJs1-7ouWer-D2prNPUHTVpB19siSDeCs0ww1+i4pX1dEwwuD7XnlKGz3Nj5cwPmoI+GJnxnxVFrNmLI5iGQXqqNmy8hLv2xDOJ4NweKpkQZ8TB78sxO2YmxOe7ZsT9ytnPTMXRyFdjnskOU-cRKizhNWQhhErT0MIaLehOFBg4OwZwvYkJWhWioaIxECphF8NXhbee7l+g3BwfSNhyCVEZDkZvUWCo+41y8KDJk3BLD5FMBEAA1stbQUQTAWGsHYBwGw6iCVoCUFs1w5hlgkhKCe69wCCQ0c0VWSBUhEFEWlA0oNaoRRWh3TylJCCZSkIQZEcNwiWKMOoUwRVLA3Gcb49Rq97bS0Zo9ReJRK6Y1CK-JgdRwmi3XJsLOphpAs1WIgSMIBki5HDKGCAw4uBSC4L1UKMRbHcEEE0iWrSUhYE6dgGYEAsBcB-KkqxIy4gOCaQgSZLAdwwlmQ6aAiwQDIkZiwd0ZzwAsB-FkCADpQx3IgEMjaUUYrxQcEAA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEll1JSFxdX7FdTUAZU20AEyMAZWsAJyMzK1t7QRsxDAQ1MAQFcRTwDC5cwQB3MXYsNIzWcHSoArFcZVKiksrIQQAHMXKaZTkueohmZrbeYpAGMC7hhiQS6SrCoaRlUa7CLiWqwdrVDM2GLL719qmRki45I4ZIVJnmufYF49PkRhPZovvfMqOPg-nFrN+HuBrq03os2AC1vtmhdcEksmtMmoLmoFH4GIIYXCkS9ESNhqiwBjILDcd9STkVH4hJjcfVaRcVAA5apnRiXQ5Yb43DmA3hgdiLF7c2mVPkCioKZoAJSxWySXxIkpmnHADAw0EoSty0HYghluIRGHOYygyp6ao1itNvAYsHIYCQ7GokFGBEk7AgMF1+uS2NORueuTNqvVmutCGgvhI+BdiFIGAdkG8XpZvrlAK5qfhJohJuFaYYOLugrycx2-029WFEyOQ0akpZm2+AhcVurjBNF1WeZZ5ULqxe-aqEWkrhG5Rbcs8zRHXZGnbYhbUXF1AGMRouSEi2GMgzB4JB0Ef0O0wGBoNGTs6kIhibh2Aou4JZ4PX+agxdBOZR39PGOl6a+6QMwAg4EgpCsHg7CXtBDaFJO3y7lO1RzpCDJrNyQ5DkhQ7cpO9RzlWKE7pU2FNChLy9AyRF4KcKzzsshYMTMIEstQhDMXWzHNLRYj0WSYxqM2LG9gqGT8W2bEcWSTaSbxYolnxTFDiB0hSYG7QDnkvH4Qy+GVKpQjyYJEp8eK9SGdUul-oKy6CLxhHoSRCiWQ5lHoZRBkiaIcgUIodFMIoEAuWoWh6IYugAMIAK4RBE3AAHaWA4ojOrCrgQGAJDeNQlA+P4gQhLoACWCVGAA6gAnhFkWmAlCXcKuljFXVRgGAYCWlQAKpo8V8GF+hGD1fW8OVxXxWElW6JY3AALbtQl+TFZYmhhJYESlTYRgxXFiXJY43QgRg3h8l8eUhSAACSB0OjluAQHyW7SPQPguTdBAjG4j2MAw3guY+71SEw4nkCMtD5Vd72wmqJ0Oos52qJDPkOswDD3XxVpo1g-3gFDqoknD4BgFwF3XcjSDMGesMkJTWWvSAzI+dQ3g4aqwXSAoYChDddTsWI1G5RDACqN2MOKNqPuwf2IyLTNA3c-MjBgyg4ww3M+ehzp8WD7PUC56t8dDkAPb9G7YzLvY9GO3SAtW9xzhmkm3Pb-zFtxB3Qd4FwZOw6OYhdssNEiAhFB6YMKDjrge3lv0klLEBqiTHPzh72V4qcvsJ2HAcHQguCPpM7QK2sOM0LnFOfV0edA6bOe6GItD1g3Y5VjMABm2jmPoB166kX3sSUteI9zcwdAZLfkXM+nbHUk-8yadKN6ZwqQtbay4QdShA8b-Pgxc5u+CAgc2v+Wv8I6Ov09QjO76jCvn4+yv0wwN82sp4tMGL0uH8fSic3zJ9eYHzUL-YkqpTiSHNLrTmzI5gmTpGqTmc8+TKRxOvIULITJkkQchOBykcy7CRD2OY6CIEcQ3iQ7MXQB7uxIckdMNDMyUKRLWQhy8WQ4LYTaehRFBg4OwfQthUIQQSyIV0Nhkxpj9BEavcRC9KjCLoUgjIQjkGqJUfIhsGsvj90Pl4CGjJuCWHyKYCIABrNa2gogmAsNYOwDgNh1CtPwF6WVObAjLE4me7CSEL2cZCci2jUhEH5ggTKRoIYNWiutTuB0KSEBylIQgKJh6RCMOoUwpVLBsVcf4vxWiG4XzwFgFxJR8D01CK-JgdQIk2h3JsHOphpDs1WIgaMIBkjan6ECMcXApBcAGhFGIdjuCCCadLVpKQsCdOwKpCAWAuDLhAOEKx0RbFxAcE0hAEyWCHlhDMp00BFggBRCzFgnpzlAiyCTK4TpTR3IgIM7asV4pJQcEAA noborder}} </WRAP>
  
 <callout title="Voltages - Currents - True Power - Apparent and Reactive Power"> <callout title="Voltages - Currents - True Power - Apparent and Reactive Power">
Zeile 711: Zeile 710:
 </panel> </panel>
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlczMtQ28DCkFyj19LtIjtdm87EjK-WKEXDNdZQqe+eW9ah0l3ciMJFxywwyQG6OlE1MgDHtiO5fXY2KTyis3wy+L59Mpn3dcmx9PS5sH4zf6CI64GJ9JrJNRHNQKAAyDHBkEhsN+ULh7CwSLAqPRsQ2JCSROkaRUiKEEKxFVJuSOKgAcmdbvDXq4SSVxmzrrwwOxpvczmTivzBXSSgAlWkvcRvLl-DhcQoYaCUBTpbDsQQyjEzeWMJpKzjgBhqjVQJywchgJDsaiQAoESTsCAwHV6slXfYYQ73Eam1XqxU3aCeEj4J2IUgYO2QHwekUpOWA97JuEwwELDOYkHC8bmhTrJaSh6DOHDCtls5F1RJa7pwvQgYCabG2tNH05TG1IJia69faN0OOwT9zPKOEkNRcHUAYxA07U8UZ6Vg8HQW-QTiYOAQOITaATuAgPTg46X064M7NWqOgnMA-mrGfd1n2DgzHYCGgUwYpDUHGCQCqQ3Jvi81DtIqpSTuScEPLe3ZAde4GDKkN4YeBUHLFyKH1uBt5zNIlTEbUeD7MRBqFHBmxCOMNGXDCJY5hRswUnKjGQSM9EcgR-IcTBDFXPxdbpmx4pCpRInITxZyMd2PRdsKEnXGAhBvsRdGCBJjFigKbTLHJwnVKsCjFOWakabwg63uRuCYepWDxBxclsURGlEa5HSOHIFCKNJHQFL4ahaHohi6AAwgArkEQTcAAdpYDiiDZPhuBAbjPAgkK4SAiKmNoAAmRgAJYJUYAAi3DhEYkWmAlCXcPOlilQ1RgGAYCWZKVliaEYgRBOVNh1bF8VJSlNyQB0GA+PybyUCFIAAJK+Xa6WnrMt60LiJHSGtBCXO4-IkIwDA+MsxYHVITBJHaxa0Etq2pXakLmnNdrTIteXPbMSDMABZ5gFyAG7VB4AHZChTop94BgFwP0Hcw6kfSQyPA74CgsqlNKFPskgqsFl3gNju7mdQZ5MEUQFLQAqr5SjYgMTCMOwF2qCA9M4wIlyTB45CXBgyjEwwpM9C0TD4-alwU5j0hi0oN2QJTj1HGDaj04WTQ0MzykZOM2bAmmQmPBcJYgh2qXsCQPhHEk7CbTSeVc48i1MMwExujLCjE24vk4ti6JsxA5oI3tBT+zbvP7A7Ide87vk5cWzg3HzMzEzQif-UdAw5Td5102cakUvwLRkWcbZYaX7bKOWvRV-X3blpXMwIbWxbXEhBYkbhl3mRStSpbNcNqBMKoIMwvsoqluDo76WDqRAiOiNQPiL0CcPqytjhMBUyML5UIv4tkq6ORpiHxJ5p8lKIKBw8siBw7lHO-Y6a8IM8jIJOz4OZ6Y0hLytHbSMIBYjrk6OARQVopBcDCvoUIFhrB2EEP-dm8xECnVAa+GAmwIBYEwlwQI2gQgmEQREBw-8DwqARpAJAkIwFAl-HCJcLA14sHdOwyBKQEbxA4BAh0kC4ERRinFRKyVBBAA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlRDMtQ28DCkFyj19LuDSJdm87EjK-WKEXDNdZQqe+eW98aOLcsMMJFzbjJAbnaUTUyC7+8iMe2Nik8orYteqClsPFyln07cdJd0fBhsb4XJp-WpA3AxPpNZJqIFqBQAGQYgkh0PhtzhF3YWGRYDRkCh2KeJLSKiRQnR2OKNKBKgAcqcXgjnsMnrVxiysWB2D8MuNYtUkry2m9BAAlDGvGLskhvUaccAMDDQSgK9LQdiS6UzcQ7JpcZhKwqq9VQJywchgJDsaiQAoESTsCAwbVS7GXWU3dKKrimtXyi1yaCeEj4B2IUgYG2QHxu05CmUgjmJmEDQGGtOY-aA26cpafNQ9crFAuDeHDCsVcXjFXLIO8W6puvpjwtBanGZewYXfOCIJiW69fbNoNG2qD+FNTFqLjagDGIFny+Vvpg8Eg6G36CcTBwCFxcbQcdwEB6cAHy5z17XFqBgnMQ-mrGffbn2DgxoQ0CmDFI1AxgkvKkHcTZGkG1CVC2q4zIB07KAWJA3vBfYCjkqRcPE5IFlBDbLJQMpIdhRrtDhgh4PscyggMhQIaMzBCOMdE0VUrG1JRszkqSLFPIx0jMnKIrceOpy8Y29ZERRuBUXyaGzLs8n8UxCk3j0TRehxMlvmAhA6dxDHSVRim0qKNYMQJzEmZUJYKGWpy-Hp4HviUnHxHpJEWUIbnuVgyGYV5jhyBQijGYxBS+GoWh6IYugAMIAK5BEE3AAHaWA4ohNj4bgdO4UFQg2IBIqY2gACZGAAlqlRgACLcOERhxaYqWpdwC6WJVLVGAYBipZklWWJoRiBEE1U2E1SUpelmXPJAjEYD4vA2q4hFFQAkkFNo5Wesz+bQeLSMsW0EBc7jLSQjAMD4ywKKiWU2lITAiuQFy0JFICbQ9SBQiqS02tMa2qJ9J3MP+55gEG-6HVB4AnVChTEgD4BgFwG2gyj-0kMwumIkdIBMll6KFPskj+hFt3gITe52dQ55MEUgEfQAqkFSjwnJPRM9dN3A6zRMCDisiSHdGDKJTDDU1z0z2h4tpvRAlPUFLShPZA9PvUCMNqKzdZgi06n8mBgLAh8MEgus9znJ2WXsCQPhAkk7C7eiRX8-chFMMwEwum9ChK-dHsc8S7C+yqaP4wUQV2w7SoTC7vtu0FCC4HdzjPJMrGUzQydIGD50p0910sw5-rkvwLTUeWAhFOXNfsV2dnl708nVx2M4N628n+ZppR4TK-dV0Fi0o8WJoIMwAdBbgOOozEWC6YrwNfdIPiLxc-p6ejohMBUOML5UEsEtk8T0r5dz+bpfmnxkogoCjyyICjhXL449prwgjz0gkvOwznpjSCXvMRA4YQCxE1J0EYLQuBSC4NFfQoQLDWDsIIABvNgFxCwOA7A-EIBYCwhaQI2gQgmCQREBwADDwqDRluKE2DHbQHhKuKhitXQsAgIrD8uQOCQLtCMeBsVErJTShlQQQA noborder}} </WRAP>
  
 <callout title="Voltages - Currents - True Power - Apparent and Reactive Power"> <callout title="Voltages - Currents - True Power - Apparent and Reactive Power">
Zeile 850: Zeile 849:
 <panel type="info" title="Exercise 7.1.1 Power and Power Factor I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 7.1.1 Power and Power Factor I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-A passive component is fed by a sinusoidal AC voltage with the RMS value $U=230~\rm V$ and $f=50.0~\rm Hz$. The RMS current on this component is $I=5.00~\rm A$ with a phase angle of $\varphi=60°$.+A passive component is fed by a sinusoidal AC voltage with the RMS value $U=230~\rm V$ and $f=50.0~\rm Hz$. The RMS current on this component is $I=5.00~\rm A$ with a phase angle of $\varphi=+60°$.
  
-  - Draw the equivalent circuits based on a series and on a parallel circuit. +1. Draw the equivalent circuits based on a series and on a parallel circuit. \\
-  - Calculate the equivalent components for both circuits. +
-  - Calculate the real power, the reactive power, and the apparent power based on the equivalent components for both circuits from 2. . +
-  - Check the solutions from 3. via direct calculation based on the input in the task above. +
- +
-<button size="xs" type="link" collapse="Loesung_7_1_1_1_Rechnung">{{icon>eye}} Result for 1.</button><collapse id="Loesung_7_1_1_1_Rechnung" collapsed="true"> +
  
 +#@HiddenBegin_HTML~71111,Result~@#
 {{drawio>electrical_engineering_2:Sol711EquivCirc.svg}} {{drawio>electrical_engineering_2:Sol711EquivCirc.svg}}
 +#@HiddenEnd_HTML~71111,Result~@#
  
-</collapse>+2. Calculate the equivalent components for both circuits. \\
  
-<button size="xs" type="link" collapse="Loesung_7_1_1_2_Rechnung">{{icon>eye}} Result for 2.</button><collapse id="Loesung_7_1_1_2_Rechnung" collapsed="true"> +#@HiddenBegin_HTML~71112,Solution~@#
  
 The apparent impedance is: The apparent impedance is:
Zeile 878: Zeile 874:
 \end{align*} \end{align*}
  
 +\\ \\
 +For the **parallel circuit**, the impedances add up like ${{1}\over{R_p}} + {{1}\over{{\rm j}\cdot X_{Lp}}}= {{1}\over{\underline{Z}}} $ with $\underline{Z} = {{U}\over{I}}\cdot e^{j\cdot \varphi}$. \\
 +
 +There are multiple ways to solve this problem. Two ways shall be shown here:
 +
 +=== with the Euler representation ===
 +Given the formula $\underline{Z} = {{U}\over{I}}\cdot e^{j\cdot \varphi}$ the following can be derived:
 +\begin{align*} 
 +{{1}\over{\underline{Z}^{\phantom{A}}}} &= {{I}\over{U}}\cdot e^{-j\cdot \varphi} \\
 +                                        &= {{1}\over{Z}}\cdot e^{-j\cdot \varphi} &&= {{1}\over{R_p}} + {{1}\over{{\rm j}\cdot X_{Lp}}}  \\
 +                                        &= {{1}\over{Z}}\cdot \left( \cos(\varphi) - {\rm j}\cdot \sin(\varphi) \right) &&= {{1}\over{R_p}} - {{\rm j}\over{X_{Lp}}}  \\
 +\end{align*}
 +
 +Therefore, the following can be concluded:
 +\begin{align*} 
 +{{1}\over{Z}}\cdot \cos(\varphi)        &= {{1}\over{R_p}}           &&\rightarrow && R_p    &= {{Z}\over{\cos(\varphi)}}  \\
 +- {\rm j}\cdot \sin(\varphi)            &= - {{\rm j}\over{ X_{Lp}}} &&\rightarrow && X_{Lp} &= {{Z}\over{\sin(\varphi)}}  \\
 +\end{align*}
  
-For the **parallel circuit**, the impedances add up like ${{1}\over{R_p}} + {{1}\over{{\rm j}\cdot X_{Lp}}}{{1}\over{\underline{Z}}} $. \\ +=== with the calculated values of the series circuit === 
-The easiest thing is here to use the formulas of $R_s$ and $X_{Ls}$ from before:+Another way is to use the formulas of $R_s$ and $X_{Ls}$ from before.
  
 \begin{align*}  \begin{align*} 
Zeile 888: Zeile 902:
                                                   &=& {        {\cos \varphi - {\rm j} \cdot \sin \varphi }       \over{Z}} \\                                                   &=& {        {\cos \varphi - {\rm j} \cdot \sin \varphi }       \over{Z}} \\
 \end{align*} \end{align*}
 +
 +Therefore 
  
 Now, the real and imaginary part is analyzed individually. First the real part: Now, the real and imaginary part is analyzed individually. First the real part:
Zeile 893: Zeile 909:
 \begin{align*}  \begin{align*} 
 {{1}\over{R_p}}   &=& {{\cos \varphi}\over{Z}}  \\ {{1}\over{R_p}}   &=& {{\cos \varphi}\over{Z}}  \\
-\rightarrow R_p   &=& {{Z}\over{\cos \varphi}} &=& {{46 ~\Omega}\over{\cos 60°}} = \boldsymbol{92 ~\Omega}+\rightarrow R_p   &=& {{Z}\over{\cos \varphi}} &=& {{46 ~\Omega}\over{\cos 60°}} 
 \end{align*} \end{align*}
  
 \begin{align*}  \begin{align*} 
 {{1}\over{X_{Lp}}}  &= {{\sin \varphi}\over{Z}} & \\ {{1}\over{X_{Lp}}}  &= {{\sin \varphi}\over{Z}} & \\
-\rightarrow X_{Lp}  &= {{Z}\over{\sin \varphi}} = {{46 ~\Omega}\over{\sin 60°}} = 53.1 ~\Omega \\ +\rightarrow X_{Lp}  &= {{Z}\over{\sin \varphi}} = {{46 ~\Omega}\over{\sin 60°}} \\ 
-\rightarrow L_p     &= {{46 ~\Omega}\over{2\pi \cdot 50~\rm Hz \cdot \sin 60°}} &= \boldsymbol{169 ~\rm mH}+\rightarrow L_p     &= {{46 ~\Omega}\over{2\pi \cdot 50~\rm Hz \cdot \sin 60°}} 
 \end{align*} \end{align*}
  
-</collapse>+#@HiddenEnd_HTML~71112,Solution ~@#
  
 +#@HiddenBegin_HTML~71113,Result~@#
 +For the series circuit:
 +\begin{align*} 
 +R_s      &= {23 ~\Omega} \\
 +L_s      &= {127 ~\rm mH} \\
 +\end{align*}
  
-<button size="xs" type="link" collapse="Loesung_7_1_1_3_Endergebnis">{{icon>eye}} Result for 3. </button><collapse id="Loesung_7_1_1_3_Endergebnis" collapsed="true"> +For the parallel circuit: 
 +\begin{align*}  
 +R_p      &{92 ~\Omega} \\ 
 +L_p      &= {169 ~\rm mH} \\ 
 +\end{align*} 
 +#@HiddenEnd_HTML~71113,Result~@#
  
 +3. Calculate the real, reactive, and apparent power based on the equivalent components for both circuits from 2. . \\
 +
 +#@HiddenBegin_HTML~71114,Solution~@#
 +The general formula for the apparent power is $\underline{S} = U \cdot I \cdot e^{\rm j\varphi}$. \\ By this, the following can be derived:
 +\begin{align*} 
 +\underline{S} &= U \cdot I  \cdot e^{\rm j\varphi} \\
 +              &= Z \cdot I^2 \cdot e^{\rm j\varphi}     &&= \underline{Z} \cdot I^2 \\
 +              &= {{U^2}\over{Z}} \cdot e^{\rm j\varphi} &&= {{U^2}\over{\underline{Z}^{*\phantom{I}}}} \\
 +\end{align*}
 +
 +These formulas are handy for both types of circuits to separate the apparent power into real part (real power) and complex part (apparent power):
 +  - for **series circuit**: $\underline{S} =\underline{Z} \cdot I^2 $ with $\underline{Z} = R + {\rm j} X_L$ 
 +  - for **parallel circuit**: $\underline{S} ={{U^2}\over{\underline{Z}^{*\phantom{I}}}} $ with ${{1} \over {\underline{Z}^{\phantom{I}}} }   = {{1}\over{R}} + {{1}\over{{\rm j} X_L}} \rightarrow {{1} \over {\underline{Z}^{*\phantom{I}}} }   = {{1}\over{R}} + {{\rm j}\over{ X_L}} $ 
 +\\ 
 +Therefore: 
 ^                  ^ series circuit ^ parallel circuit ^ ^                  ^ series circuit ^ parallel circuit ^
 | active   power   | \begin{align*} P_s &= R_s \cdot I^2 \\ &= 23.0 ~\Omega \cdot (5{~\rm A})^2 \\ &= 575 {~\rm W} \end{align*} | \begin{align*} P_p &= {{U_p^2}\over{R_p}} \\ &= {{(230{~\rm V})^2}\over{92~\Omega}} = 575 {~\rm W}   \end{align*} | | active   power   | \begin{align*} P_s &= R_s \cdot I^2 \\ &= 23.0 ~\Omega \cdot (5{~\rm A})^2 \\ &= 575 {~\rm W} \end{align*} | \begin{align*} P_p &= {{U_p^2}\over{R_p}} \\ &= {{(230{~\rm V})^2}\over{92~\Omega}} = 575 {~\rm W}   \end{align*} |
-| reactive power   | \begin{align*} Q_s &Z_{Ls} \cdot I^2 \\ &= 39.8 ~\Omega \cdot (5{~\rm A})^2 \\ &= 996 {~\rm Var} \end{align*} | \begin{align*} Q_p &= {{U_p^2}\over{Z_{Lp}}} \\ &= {{(230{~\rm V})^2}\over{53.1 ~\Omega}} = 996 {~\rm Var}   \end{align*} | +| reactive power   | \begin{align*} Q_s &X_{Ls} \cdot I^2 \\ &= 39.8 ~\Omega \cdot (5{~\rm A})^2 \\ &= 996 {~\rm Var} \end{align*} | \begin{align*} Q_p &= {{U_p^2}\over{X_{Lp}}} \\ &= {{(230{~\rm V})^2}\over{53.1 ~\Omega}} = 996 {~\rm Var}   \end{align*} | 
-| apparent power   | \begin{align*} S_s &= \sqrt{P_s^2 - Q_s^2} \\ &= I^2 \cdot \sqrt{R_s^2 + Z_{Ls}^2} \\ &= 1150 {~\rm VA} \end{align*} | \begin{align*} S_p &= \sqrt{P_s^2 - Q_s^2} \\ &= U^2 \cdot \sqrt{{{1}\over{R_p^2}} + {{1}\over{Z_{Lp}^2}}} \\ &= 1150 {~\rm VA}   \end{align*} |+| apparent power   | \begin{align*} S_s &= \sqrt{P_s^2 - Q_s^2} \\ &= I^2 \cdot \sqrt{R_s^2 + X_{Ls}^2} \\ &= 1150 {~\rm VA} \end{align*} | \begin{align*} S_p &= \sqrt{P_s^2 - Q_s^2} \\ &= U^2 \cdot \sqrt{{{1}\over{R_p^2}} + {{1}\over{X_{Lp}^2}}} \\ &= 1150 {~\rm VA}   \end{align*} |
  
-</collapse>+#@HiddenEnd_HTML~71114,Solution ~@#
  
 +4. Check the solutions from 3. via direct calculation based on the input in the task above. \\
  
-<button size="xs" type="link" collapse="Loesung_7_1_1_4_Endergebnis">{{icon>eye}} Result for 4. </button><collapse id="Loesung_7_1_1_4_Endergebnis" collapsed="true"> +<button size="xs" type="link" collapse="Loesung_7_1_1_4_Endergebnis">{{icon>eye}} Solution </button><collapse id="Loesung_7_1_1_4_Endergebnis" collapsed="true"> 
  
 active power: active power:
Zeile 933: Zeile 976:
 apparent power: apparent power:
 \begin{align*}  \begin{align*} 
-&= U \cdot I \\+&= U \cdot I \\
   &= 230{~\rm V} \cdot 5{~\rm A}  \\   &= 230{~\rm V} \cdot 5{~\rm A}  \\
   &= 1150 {~\rm VA}   &= 1150 {~\rm VA}
Zeile 1029: Zeile 1072:
 <button size="xs" type="link" collapse="Loesung_7_1_3_1_Rechnung">{{icon>eye}} Result for 1.</button><collapse id="Loesung_7_1_3_1_Rechnung" collapsed="true">  <button size="xs" type="link" collapse="Loesung_7_1_3_1_Rechnung">{{icon>eye}} Result for 1.</button><collapse id="Loesung_7_1_3_1_Rechnung" collapsed="true"> 
  
-The active power is $P = 1.80 kW$. \\ +The active power is $P = 1.80 ~\rm kW$. \\ \\ 
-The apparent power is $S = U \cdot I = 220V \cdot 20A = 4.40 kVA$. \\ +The apparent power is $S = U \cdot I = 220 ~\rm V \cdot 20 ~\rm A = 4.40 ~\rm kVA$. \\ \\ 
-The reactive power is $Q = \sqrt{S^2 - P^2} = \sqrt{(4.40 kVA)^2 - (1.80 kW)^2} = 4.01 kVar$ \\ +The reactive power is $Q = \sqrt{S^2 - P^2} = \sqrt{(4.40 ~\rm kVA)^2 - (1.80 ~\rm kW)^2} = 4.01 ~\rm kVar$ \\ \\ 
-The power factor is $\cos \varphi = {{P}\over{S}} = {{1.80 kW}\over{4.40 kVA}} = 0.41$.+The power factor is $\cos \varphi = {{P}\over{S}} = {{1.80 ~\rm kW}\over{4.40 ~\rm kVA}} = 0.41$.
  
 </collapse> </collapse>
Zeile 1212: Zeile 1255:
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
 +
 +#@TaskTitle_HTML@#7.2.2 Motor on 3-Phase System I#@TaskText_HTML@#
 +
 +A three-phase motor is connected to an artificial three-phase system and can be configured in wye or delta configuration.
 +  * The voltage measured on a single coil shall always be $230 ~\rm V$. 
 +  * The current measured on a single coil shall always be $10 ~\rm A$.
 +  * The phase shift for every string is $25°$ 
 +
 +  - The motor shall be in wye configuration. \\ Write down the string voltage, phase voltage, string current, phase current, and active power
 +  - The motor shall be in delta configuration. \\ Write down the string voltage, phase voltage, string current, phase current, and active power
 +  - Compare the results
 +#@TaskEnd_HTML@#
 +
 +#@TaskTitle_HTML@#7.2.3 Motor on 3-Phase System II#@TaskText_HTML@#
 +
 +A three-phase motor is connected to a three-phase system with a phase voltage of $400 ~\rm V$. The phase current is $16 ~\rm A$ and the power factor $0.9$. \\
 +Calculate the active power, reactive power, and apparent power.
 +
 +#@TaskEnd_HTML@#
 +
 +
 +#@TaskTitle_HTML@#7.2.4 Motor on 3-Phase System III#@TaskText_HTML@#
 +
 +A symmetrical and balanced three-phase motor of a production line shall be configured in a star configuration and provide a power of $17~\rm kW$ with a power factor of $0.75$. The voltage on a single string is measured to be $135 ~\rm V$. \\
 +Calculate the string current.
 +
 +#@TaskEnd_HTML@#
  
 ==== Related Links ==== ==== Related Links ====