Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:polyphase_networks [2023/05/16 14:02]
ott
electrical_engineering_2:polyphase_networks [2024/06/18 03:20] (aktuell)
mexleadmin [Excercises]
Zeile 1: Zeile 1:
-====== 7Polyphase Networks and Power in AC Circuits ======+====== 7 Polyphase Networks and Power in AC Circuits ======
  
 emphasizing the importance of power considerations emphasizing the importance of power considerations
Zeile 23: Zeile 23:
 Thus, the induced voltage $u(t)$ is given by:  Thus, the induced voltage $u(t)$ is given by: 
 \begin{align*}  \begin{align*} 
-u(t) &               \frac{{\rm d}                  \Psi}            {{\rm d}t} \\  +u(t) &              -\frac{{\rm d}                  \Psi}            {{\rm d}t} \\  
-     &= N  \cdot       \frac{{\rm d}                  \Phi}            {{\rm d}t} \\  +     &-N  \cdot       \frac{{\rm d}                  \Phi}            {{\rm d}t} \\  
-     &= NBA\cdot       \frac{{\rm d}       \cos \varphi(t)}            {{\rm d}t} \\  +     &-NBA\cdot       \frac{{\rm d}       \cos \varphi(t)}            {{\rm d}t} \\  
-     &= \hat{\Psi}\cdot\frac{{\rm {\rm d}} \cos (\omega t + \varphi_0)}{{\rm d}t} \\  +     &-\hat{\Psi}\cdot\frac{{\rm {\rm d}} \cos (\omega t + \varphi_0)}{{\rm d}t} \\  
-     &-\omega \hat{\Psi}           \cdot \sin (\omega t + \varphi_0) \\  +     &= \omega \hat{\Psi}           \cdot \sin (\omega t + \varphi_0) \\  
-     &-\hat{U}                     \cdot \sin (\omega t + \varphi_0) \\ +     &= \hat{U}                     \cdot \sin (\omega t + \varphi_0) \\ 
 \end{align*} \end{align*}
  
Zeile 34: Zeile 34:
 Out of the last formula we derived the following instantaneous voltage $u(t)$  Out of the last formula we derived the following instantaneous voltage $u(t)$ 
 \begin{align*}  \begin{align*} 
-u(t) &-\hat{U}  \cdot \sin (\omega t + \varphi_0) \\  +u(t) &= \hat{U}  \cdot \sin (\omega t + \varphi_0) \\  
-     & \hat{U}  \cdot \sin (\omega t + \varphi'_0) \\  +     &= \sqrt{2} U\cdot \sin (\omega t + \varphi_0) \\ 
-     &= \sqrt{2} U\cdot \sin (\omega t + \varphi'_0) \\ +
 \end{align*} \end{align*}
  
Zeile 201: Zeile 200:
 Similarly, the currents and voltages can be separated into active, reactive, and apparent values. </callout> Similarly, the currents and voltages can be separated into active, reactive, and apparent values. </callout>
  
-Based on the given formulas the three types of power are connected with each other. Since the apparent power is given by $S=U\cdot I$, the active power $P = U\cdot I \cdot \sin \varphi = S \cdot \sin \varphi $ and the reactive power $Q = S \cdot \cos \varphi $, the relationship can be shown in a triangle (see <imgref imageNo02>).+Based on the given formulas the three types of power are connected with each other. Since the apparent power is given by $S=U\cdot I$, the active power $P = U\cdot I \cdot \cos \varphi = S \cdot \cos \varphi $ and the reactive power $Q = S \cdot \sin \varphi $, the relationship can be shown in a triangle (see <imgref imageNo02>).
  
 <WRAP> <imgcaption imageNo02 | Power Triangle of active, reactive and apparent power></imgcaption> {{drawio>powertriangle.svg}} </WRAP> <WRAP> <imgcaption imageNo02 | Power Triangle of active, reactive and apparent power></imgcaption> {{drawio>powertriangle.svg}} </WRAP>
Zeile 411: Zeile 410:
 The phase currents are given as the currents through a single line: $I_1$, $I_2$, $I_3$. \\  The phase currents are given as the currents through a single line: $I_1$, $I_2$, $I_3$. \\ 
 The potential of the star point is called **neutral** $\rm N$ </WRAP> The potential of the star point is called **neutral** $\rm N$ </WRAP>
-  * **Star-voltages** $U_\rm Y$ (alternatively: phase-to-neutral voltages, line-to-neutral voltages, in German: //Sternspannungen//): the voltages of the lines can be also measured or used referring to the neutral potential.+  * **Star Voltages** $U_\rm Y$ (alternatively: phase-to-neutral voltages, line-to-neutral voltages, in German: //Sternspannungen//): the voltages of the lines can be also measured or used referring to the neutral potential.
 <WRAP> <imgcaption imageNo13 | Example of an Three-Phase System></imgcaption> {{drawio>ExampleThreePhaseSystem.svg}} </WRAP> <WRAP> <imgcaption imageNo13 | Example of an Three-Phase System></imgcaption> {{drawio>ExampleThreePhaseSystem.svg}} </WRAP>
  
Zeile 434: Zeile 433:
 The phase voltage is therefore ${{1}\over{\sqrt{3}}} \cdot 400~\rm V \approx 230~\rm V$. The following two simulations show these voltages. The phase voltage is therefore ${{1}\over{\sqrt{3}}} \cdot 400~\rm V \approx 230~\rm V$. The following two simulations show these voltages.
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQAJRA8GeBuCSSeOBpzDSo4dpzkZobFMrCa8kAhnUEE5YtjbDR4yQxai5nO5wWqQ6zdrXQwCMFoYMNhw2cgIcCwF5PGt7WiwxSFJwehAEEAANKINYpztrJJAGfPSATWyYsAw89PiiwvSAOQEAB3rksAZk+WTHFQhIVvdbfJ7wLv6oIbG+uSL8iAGKtIx04vTkRhKQZra2BHS+yjWFlUG9g-Hk4-nas6GQkY3V28nBgA8QahA8Nnaf67gZIABQAFgBDADOXAAOpCAGoAewANgAXcEAcy4kIEnxwpE4eAiphiqVqyQAyuiAE5wpFozHY5ZVGopRj2dIAVQAdgBjRHc7lcXmorgAEwELNybOsEhlTgU8CV8El1Wl61lT2U8nAyuVVjEcqlYlIHTVLjSFqtmgNNn+Ju6hQt9itkREYjY7M4HsYcqcuvg7GULhtAHdrJ6ivYfVJJIMWBEeCwFJ1RL5DkRlDgAPpgbOQbPvUhgSBijDZtj5nzZvjZhi5uD5utNksFwbhviXDV8CYawYYtNdyOdtZ+qYd9OvEdFSPtwcndKGrVz6ePArdU3j0R+LaLojdfIrydIBJjKWDABumqnZ-NKg4ww0WiQ2tgFBwSDYJYYH5on4iMCWFeS43oUXTJK4D4eM+ygID4poEJA8gIGQRhIJAfyAQIwF2t2+6vJBaiBJ4L7WpY0Rpr2+Q8CerxNMsSZVFOBwHhsIAADKCBR060T2yQEmkHEMAxk5rnx7hUIJ7E4MsZ5UbUqbpOxwkUTMOoajgmZKTJFFzH2dEcYI4Y3GwEyepwpkQQI4b4ZZKzpHZ5wSdctG2RMixTG0NwsfZ7Dufc4b8JIPneaYnnsGqyYRRZ-lLG0YybP8O5vNZ4CKbRCW0XOQWWgq1ysE5OU+UVtEeYVimsEVYVlcyilhZwIVCbVwVZWktHac1uWwawSlcTkOWOX5gLNOGCVMQlBWpZlWD4Yl2WpnZblWaNDSsOZXVzrN7VzHNqWhckX7BfVyxrhp6nbJxyz7LUZlqkVTUUddwwWWqmlYB1ABGDiSAJXQvvscYCF9OCFMWICrH8+wAQIQA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQAJRA8GeBuCSSeOBpzDSo4dpzkZobFMrCa8kAhnUEE5YtjbDR4yQxai5nO5wWqQ6zdrXQwCMFoYMNhw2cgIcCwF5PGt7WiwxSFJwehAEEAANKINYpztrJJAGfPSATWyYsAw89PiiwvSAOQEAB3rksAZk+WTHdxVIVvdbfJ7wLv6IQbaxvrki-IipirSMdOL05EYSkGa2tgR0vsp1xYGhg9qJk4Wj87aQkc2128moAQAPEGoQPDZ237JWrJAAKAAsAIYAZy4AB0oQA1AD2ABsAC4QgDmXChn3cpE4eAiphiqWBIAAyhiAE7w5HorE4lZVGopRj2dIAVQAdgBjJHc7lcXlorgAEwELNybOsEhlTgU8CV8El1WlG1lT2U8nAyuVVjEcqlYlIHTVLjSFqtmgNNgBJu6hQt9itkREYjY7M4HsYcqcuvg7GULhtAHdrJ6ivYfVJJIMWBEeCwFJ1RL4jkRlDgAPpgbOQbMfUhgSBijDZtj5nzZvjZhi5uD5utNksFwbhviHV58CYawaYtNdhiRzvrP3vDvp7tT4dYduD07pQ1a+ej9xsGRjLrJVd+bZLojdfKrqdIBJjKWDABumu7F-NKg4ww0WiQ2tgFBwSDYJYYX5o34RDAlg3sud6FNuOhuB4r7KAgPimgQkDyAgZBGEgkD-MBAigXaGqyFQryuE+MFeMGNrRGmvb5DwZ6vE0KxJlU3aHEemwgAAMoIlFrnRPbJASaScQwjFTo8VG9IR6QcTgKwXtRtSptJImUbMOoajgmbSbJlHzH29GcYI4Y3BuySepwpkTu4hGWSZEzTNZQJ0Ye7ATEs7xtDcrGrOklnufO-CSN5XmmB57Bqsm4UWW59wAlscXMf5AjhoFaR0WM8UBUprAZawDmpd5BXObFBWsAVoVJZR5U7mkoXKcySl0Zw8XaQ1QV5ZazWGW1rk1bZuzJQljANHlg0Zc5UlNYNqV+TZ9ljSNFkRaN4YuS18yZYNIVmUpoWDLpG6vH0GrSdxOSXOMZlqgVwkrBdfTme4WmcbJABGDiSIJXRvgccYCO9OCFMWIBrP8BxAQIQA noborder}} </WRAP>
  
-<WRAP >{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQADxDUQeNiAaRS42QnCyACgAsAhgGcuAHQ0A1APYAbAC5qA5lw3CQOUpzw4QCUnnFYFYWQGUzAJ11DUwsrAQB3ED4EBQYGBT4GWViFSAFzSLBoqTYsKJi8BigocIys5NKYnOKIvKk4yIYCupSS2pw2Qp5pJNJZVJqEMEZ6niIk+v6KkCRc7vAMTlSANwam8q6ZecXwdk4cBgxoNhQihlgKHCQ2MEgGS5orpxg2ARWutZG5xL6djlsDo4nTgIaBeVxIW6IMgYS6QSTPV6rQrrMbNIoQP77Q7HJBFRZHATSNwJcbxGZohQAOUJkGJg2G8WipOcIAAMoIiVNySTRMC2QwacTMgp2p0wIlbFQWaycCVKDFeuwFlJFZNUd9nBgFX0BAAHSVJKrqxUQCCpfXyqSbS0a03VcDiq3yLVO4r6nKcIacD0q2R282uhhVOa0LD+kr8ZHBzZBrCTSNbV1et0O5GbBOxnZmvWpxMZ9M7VKc-M-OYKVkC4uOzOcTPl2VVwrJz3K8sc2m5jW1xVUkoh+hJ5WTL5GqU1iPVxXGnUREPKn3NkrqqoIfbZONyl1za5pnUGKQeU6IVwgLX4s22bKnQqcVSaHT6YxmSwCfdeFm149YM-YO1OMC4rWF6+GoASPsEljWEAA noborder}} </WRAP>+<WRAP >{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgjCAMB0l5AWAnC1b0DYrQMwHYkcMM8AOJBDUnMPPLAJggThAFZJ2BTAWjDABQADxDUQeNiAaRS42QnCyACgAsAhgGcuAHQ0A1APYAbAC5qA5lw3CQOUpzw4QCUnnFYFYWQGUzAJ11DUwsrAQB3ED4EBQYGBT4GWViFSAFzSLBoqTYsKJi8BigocIys5NKYnOKIvKk4yIYCupSS2pw2Qp5pJNJZVJqEMEZ6niIk+v6KkCRc7vAMTlSANwam8q6ZecXwdk4cBgxoNhQihlgKHCQ2MEgGS5orpxg2ARWutZG5xL6djlsDo4nTgIaBeVxIW6IMgYS6QSTPV6rQrrMbNIoQP77Q7HJBFRZHATSNwJcbxGZohQAOUJkGJg2G8WipOcIAAMoIiVNySTRMC2QwacTMgp2p0wIlbFQWaycCVKDFeuwFlJFZNUd9nBgFX0BAAHSVJKrqxVOCCpfXyqSbS0a03VcDiq3yLVO4r6nKcIacD0q2R282uhhVOa0LD+kr8ZHBzZBrCTSNbV1et0O5GbBOx2w7AMJ5MZzbhzn5n5zBSsgVFx2ZziZsuyyuFZOe5Vljm01O+06KqklEP0JPKyZfI1S6sRqsm0eq3vp5U+psldVVBD7bJxuUuubXNM6gxSDynRCuEBa-FmrNB06FTiqTQ6fTGMyWAR7rwsmtHrCn7AQCCm3E1uevhqAED7BJY1hAA noborder}} </WRAP>
  
 ==== 7.2.3 Load and Power in Three-Phase Systems ==== ==== 7.2.3 Load and Power in Three-Phase Systems ====
Zeile 467: Zeile 466:
 </panel> </panel>
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlczMtQ28DCkFyj19LtIjtdm87EjK-WKEXDNdZQqe+eW9ah0l3ciMJFxywwyQG6OlE1MgDHtiO5fXY2KTyis3wy+L59Mpn3dcmx9PS5sH4zf6CI64GJ9JrJNRHNQKAAyDHBkEhsN+ULh7CwSLAqPRsQ2JCSROkaRUiKEEKxFVJuSOKgAcmdbvDXq4SSVxmzrrwwOxpvczmTivzBXSSgAlWkvcRvLl-DhcQoYaCUBTpbDsQQyjEzeWMJpKzjgBhqjVQJywchgJDsaiQAoESTsCAwHV6slXfYYQ73Eam1XqxU3aCeEj4J2IUgYO2QHwekUpOWA97JuEwwELDOYkHC8bmhTrJaSh6DOHDCtls5F1RJa7pwvQ5SZ5TlmY+kAkOEF1qS3jXYq1IJia69faN0OOwSjtvdu5qLg6gDGC6uanijPSsHg6H36A8vRDhAwVztTFw7iOI+7va4PbNWqOgnMY-mrHfi6tMDgzBo6rmngLikLgFBIIg3Jfi8bjEpqpTzrBlzGgh96KGh5ZDpU1TwdkOF3jWeH4Uhw6CHg+xzMhAyFIhIxCOMNFUVUTG1ORswUnKjEwXRrIKkklFNrMVz1qW6ZseKQoUcJXabPRQloT0TRdqxuCTiqjKDiq7Q8eJjFigKbTLDxDHCWKdakeMQ4aeOj4qQ+T4LsUslkapBGFA+xE8aIcgUIoUkdAUvhqFoeiGLoADCACuQRBNwAB2lgON5JA+G4ECeOllBBSAiKmNoAAmRgAJZxUYADqACeYXhaYcVxdwK6WEVtVGAYBhxSVAAqmixXwIX6EYABipjRbwZVFbFRj+BVuiWNwAC2bVxZkRWWJoU2WEEJU2EYUUxfFiWOHIkAdBgPj8m8WXLGoACSR12qluAQPyj60Li0jLPdBCXO4L2MAwPjLMWX1SEw-HkJctDZXd3l2pC5rnRelxXaoIAw7MSDMAwT2zFy2PvdQCj4rDSCQoU6JI2AYBcNdaNff+Aq4wzCIfSALLeTS7keBBZoQED4Ds04vTNM9TBFNQBNqAAqkdSjYgMTCMOwgOozLHMCJckzc8WZ6+MWgs9C0TD7K6kN86z1AG0ooOQKLUNHJLIAy4WTQ0ArSl9iCwJpoqZzZt82Yod57ApUCSTsDjNK02rjxZUwzATG6kMKPzbhHTi2LosrEDmjTrMFOnocA-sEc50n0dHQgYE-bICBazM-M0JXmM-QMVegwD2Uy6Y0jm-MiCRiAsQ7p04CKFaUhcP1YVhNYdiCD3Kv93EWDD9gmwQFg9lcIE2ghCYFhz5EPe+ZqLCQKTQ+fg60DTAuvl82flR85PLBSBAErLkUGg6ANEXRbFBKDggA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlRDMtQ28DCkFyj19LuDSJdm87EjK-WKEXDNdZQqe+eW98aOLcsMMJFzbjJAbnaUTUyC7+8iMe2Nik8orYteqClsPFyln07cdJd0fBhsb4XJp-WpA3AxPpNZJqIFqBQAGQYgkh0PhtzhF3YWGRYDRkCh2KeJLSKiRQnR2OKNKBKgAcqcXgjnsMnrVxiysWB2D8MuNYtUkry2m9BAAlDGvGLskhvUaccAMDDQSgK9LQdiS6UzcQ7JpcZhKwqq9VQJywchgJDsaiQAoESTsCAwbVS7GXWU3dKKrimtXyi1yaCeEj4B2IUgYG2QHxu05CmUgjmJmEDQGGtOY-aA26cpafNQ9crFAuDeHDCsVcXjFXLIO8W6puvpkDwrN1ppekg5u49MGVJv+mqCIJiW69fbNoNG2rjjvKTFqLjagDG7Yuvc3hV9MHgkHQR-QHl6gcIGF2NqYuHcQPn7b7293FqBgnME-mrE-W5X2DgzA0GqKp4C4pC4BQSCIP2M7LLsMoFouihIYhfZuH25a-JUwp3Dhz6jtk+FwThtR4PscyggMhRIcwtGnNRlFVIxpG4OR5KkgxTy0dIzJyiK7GzvR8GkvWCGCGRsx8lu5HwV63FCOMDFegO-IlBJw7KtOI7LKMQjqQxtKijWuk8Yp8G0qJZanL89IabsK7iaxO70jh8mOVwz4ua5umOHIFCKDJtEFL4ahaHohi6AAwgArkEQTcAAdpYDiiE2PhuB0VDSJQIUgEipjaAAJkYACWCVGAA6gAnhFkWmAlCXcGulglfVRgGAYCVlQAKpo8V8GF+hGAAYqYsW8BVJXxUY-hVboljcAAth1CWZCVliaDNlhBGVNhGDFcWJclvmsLRGA+LwNquDlDYgAAkr5NrpbgECXdutB4tIyyPQQFzuG9jAMD4ywKKiqU2lITAiuQFy0LlD3g0gUIqhd14XDdqj3T9zAMC9sxBrjn3UAoBKI1ChTEmjYBgFwt0I7MSCAby+NM4iX0gEyqXoi+-BQcqEAg+AnNOL0zSvUwRTUETagAKq+Uo8JST0Us4sDmNy1zAg4rIkig5evig8LyvTPaHi2rDAvs9QRtKJDkDi3DQLSyActdpLAwzF65aAsCHwtvc5zrAH0xZql7AkD4QJJOwePordGv3DlTDMBMLqwwogtuL5uKK8S7BpyqtPswU2cRziuax2n8cnRBf2yAgkyMYLNAnYzf0DAg+B-Wrfhy6Y0iW-MiDhiAsSap0IwtFwUhcINEVhNYdiCP3atD3EWBj9g3EQFgHkWoE2ghCYFiL5E-f+QqrBI6P352tA0ybv5AuXyTLAz2-IxSauRQaDoQ1RbFeKSUHBAA noborder}} </WRAP>
  
 <callout title="Voltages - Currents - True Power - Apparent and Reactive Power"> <callout title="Voltages - Currents - True Power - Apparent and Reactive Power">
Zeile 541: Zeile 540:
  
 In the case of a symmetric load, the situation and the formulas get much simpler: In the case of a symmetric load, the situation and the formulas get much simpler:
-  - The **phase-voltages** $U_\rm L$ and star-voltages $U_{\rm Y} = U_{\rm S}$ are equal to the asymmetric load: $U_{\rm L} = \sqrt{3}\cdot U_{\rm S}$.+  - The **phase-voltages** $U_\rm L$ and star-voltages $U_{\rm Y} = U_{\rm S}$ are related by: $U_{\rm L} = \sqrt{3}\cdot U_{\rm S}$ (equal to the asymmetric load).
   - For equal impedances the absolute value of all **phase currents** $I_x$ are the same: $|\underline{I}_x|= |\underline{I}_{\rm S}| = \left|{{\underline{U}_{\rm S}}\over{\underline{Z}_{\rm S}^\phantom{O}}} \right|$. \\ Since the phase currents have the same absolute value and have the same $\varphi$, they will add up to zero. Therefore there is no current on the neutral line: $I_{\rm N} =0$   - For equal impedances the absolute value of all **phase currents** $I_x$ are the same: $|\underline{I}_x|= |\underline{I}_{\rm S}| = \left|{{\underline{U}_{\rm S}}\over{\underline{Z}_{\rm S}^\phantom{O}}} \right|$. \\ Since the phase currents have the same absolute value and have the same $\varphi$, they will add up to zero. Therefore there is no current on the neutral line: $I_{\rm N} =0$
   - The **true power** is three times the true power of a single phase: $P = 3 \cdot U_{\rm S} I_{\rm S} \cdot \cos \varphi$. \\ Based on the line voltages $U_{\rm L}$, the formula is $P = \sqrt{3} \cdot U_{\rm L} I_{\rm S} \cdot \cos \varphi$   - The **true power** is three times the true power of a single phase: $P = 3 \cdot U_{\rm S} I_{\rm S} \cdot \cos \varphi$. \\ Based on the line voltages $U_{\rm L}$, the formula is $P = \sqrt{3} \cdot U_{\rm L} I_{\rm S} \cdot \cos \varphi$
   - The **(collective) apparent power** - given the formula above - is: $S_\Sigma = \sqrt{3}\cdot U_{\rm S} \cdot \sqrt{3\cdot I_{\rm S}^2} = 3 \cdot U_{\rm S} I_{\rm S}$. \\ This corresponds to three times the apparent power of a single phase.   - The **(collective) apparent power** - given the formula above - is: $S_\Sigma = \sqrt{3}\cdot U_{\rm S} \cdot \sqrt{3\cdot I_{\rm S}^2} = 3 \cdot U_{\rm S} I_{\rm S}$. \\ This corresponds to three times the apparent power of a single phase.
-  - The **reactive power** leads to:  $Q_\Sigma = \sqrt{S_\Sigma^2 - P^2} = 3 \cdot U_{\rm S} I_{\rm S} \cdot \sin (\varphi)$.+  - The **reactive power** leads to:  $Q_\Sigma = \sqrt{S_\Sigma^2 - P^2} = 3 \cdot U_{\rm S} I_{\rm S} \cdot \sin \varphi$.
 </callout> </callout>
  
Zeile 566: Zeile 565:
 </panel> </panel>
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEll1JSFxdX7FdTUAZU20AEyMAZWsAJyMzK1t7QRsxDAQ1MAQFcRTwDC5cwQB3MXYsNIzWcHSoArFcZVKiksrIQQAHMXKaZTkueuZmZrbeYpAGMC7hhiQsPqrCoaRlUa7CLiWqwdrVDM2GLJmB9qmRki45I4ZINX3q+cWTw8Z75rn2Ba2H94PbkazvhnvroNXos2H8xtIIc0Lrgklk1pk1Bc1Ao-AxBNDYYj7giRsMUWB0ZAYTjfBlklccio-EIMTj6nSLioAHI3ZCMS4fUmzD7-U5gdh3PJzckVDL8upNQQAJUx73ERy5ng4PQYGGglAUuWw7GlsvhGHO4KVnHAqvVJE1YgYsHIYCQ7GokFGBEk7AgMB1MpxvKS5yeEJNYzVGqg7WgvhI+CdiFIGDtkG8HpuIq530Vybh4LBymeeuxwOOQpqi1+m3quaGjCOldF3N4my5AhcFrrE3BF1WRtZq3uPp9zQi0lcP08w8V0gHIzYaw7xzUXB1AGMpz3EWwxlqYPBIOhd+h2mAwNBIydHUhEETcOwFB3BIO+737hvQxdBOYhyXR3d59g4H1qDgSCkKweDsCeYGatUTbvM+6aFLOazPmsuYPiqPZFtB9SzuW1TYZUPo4fBT6VM+OF4HylLwmMiLgjMQhzNQhAjFmbY5oI5FiCscrUe8dGsgqLa8FxcFiIx0yCQ2LbNBxQkCoWnH-PJfEMUxPrdPJ0keB+ppfrWfEyTx9LinpEL0dpsHDv887sVp2GMnhCj6bZT72cRjmmY4cgUIofJMIoECOWoWh6IYugAMIAK4RBE3AAHaWA4oiOjCrgQGAJDeNQlA+P4gQhLoACWsVGAA6gAnqFYWmLFsXcIulgFdVRgGAYsVFQAKpoMV8MF+hGJ13W8CVBUxWEZW6JY3AALYtbF+QFZYmhhJYERFTYRiRdFcUJZ5rB9Bg3hCQq2WBSAACSnl2pluAQEJJBXPQPiOZdBAjG4d2MAw3iOTeL1SEwYrkCMtA5edL0wqqh12osJ2qGDohHcwDA3ZxLbI1gP3gODprEtD4BgFwp0XQjdrMIeUMkGT6VPSALII9Q3hIaaAXSAoYChJddSMVaPRZaDACql2MHJvC7Li31w4L9P-a8VojBgyiYwwHMI-ZjqccDLPUI5KucRDkC3V9U4Y5L3bgMO6n9jcBazmmUnW28uxqNmVQI2B3gXBk7Aoxip1Sw0iICEUbrAwomOuJ5xSIt7wcQKqhOs8xkcZbipze3HId+7tuA3pM7Sy2smM0LtSBI+9CD4G9Eu+CAgu6KJj30phTQQgAZto5j6J52upO9YmmtXagc3MHSVM3kEMcO9JlpKcyIZU-CN7PVrgp0K+Cq7Vp5xchsgxcJs1-7ouWer-D2prNPUHTVpB19siSDeCs0ww1+i4pX1dEwwuD7XnlKGz3Nj5cwPmoI+GJnxnxVFrNmLI5iGQXqqNmy8hLv2xDOJ4NweKpkQZ8TB78sxO2YmxOe7ZsT9ytnPTMXRyFdjnskOU-cRKizhNWQhhErT0MIaLehOFBg4OwZwvYkJWhWioaIxECphF8NXhbee7l+g3BwfSNhyCVEZDkZvUWCo+41y8KDJk3BLD5FMBEAA1stbQUQTAWGsHYBwGw6iCVoCUFs1w5hlgkhKCe69wCCQ0c0VWSBUhEFEWlA0oNaoRRWh3TylJCCZSkIQZEcNwiWKMOoUwRVLA3Gcb49Rq97bS0Zo9ReJRK6Y1CK-JgdRwmi3XJsLOphpAs1WIgSMIBki5HDKGCAw4uBSC4L1UKMRbHcEEE0iWrSUhYE6dgGYEAsBcB-KkqxIy4gOCaQgSZLAdwwlmQ6aAiwQDIkZiwd0ZzwAsB-FkCADpQx3IgEMjaUUYrxQcEAA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEll1JSFxdX7FdTUAZU20AEyMAZWsAJyMzK1t7QRsxDAQ1MAQFcRTwDC5cwQB3MXYsNIzWcHSoArFcZVKiksrIQQAHMXKaZTkueohmZrbeYpAGMC7hhiQS6SrCoaRlUa7CLiWqwdrVDM2GLL719qmRki45I4ZIVJnmufYF49PkRhPZovvfMqOPg-nFrN+HuBrq03os2AC1vtmhdcEksmtMmoLmoFH4GIIYXCkS9ESNhqiwBjILDcd9STkVH4hJjcfVaRcVAA5apnRiXQ5Yb43DmA3hgdiLF7c2mVPkCioKZoAJSxWySXxIkpmnHADAw0EoSty0HYghluIRGHOYygyp6ao1itNvAYsHIYCQ7GokFGBEk7AgMF1+uS2NORueuTNqvVmutCGgvhI+BdiFIGAdkG8XpZvrlAK5qfhJohJuFaYYOLugrycx2-029WFEyOQ0akpZm2+AhcVurjBNF1WeZZ5ULqxe-aqEWkrhG5Rbcs8zRHXZGnbYhbUXF1AGMRouSEi2GMgzB4JB0Ef0O0wGBoNGTs6kIhibh2Aou4JZ4PX+agxdBOZR39PGOl6a+6QMwAg4EgpCsHg7CXtBDaFJO3y7lO1RzpCDJrNyQ5DkhQ7cpO9RzlWKE7pU2FNChLy9AyRF4KcKzzsshYMTMIEstQhDMXWzHNLRYj0WSYxqM2LG9gqGT8W2bEcWSTaSbxYolnxTFDiB0hSYG7QDnkvH4Qy+GVKpQjyYJEp8eK9SGdUul-oKy6CLxhHoSRCiWQ5lHoZRBkiaIcgUIodFMIoEAuWoWh6IYugAMIAK4RBE3AAHaWA4ojOrCrgQGAJDeNQlA+P4gQhLoACWCVGAA6gAnhFkWmAlCXcKuljFXVRgGAYCWlQAKpo8V8GF+hGD1fW8OVxXxWElW6JY3AALbtQl+TFZYmhhJYESlTYRgxXFiXJY43QgRg3h8l8eUhSAACSB0OjluAQHyW7SPQPguTdBAjG4j2MAw3guY+71SEw4nkCMtD5Vd72wmqJ0Oos52qJDPkOswDD3XxVpo1g-3gFDqoknD4BgFwF3XcjSDMGesMkJTWWvSAzI+dQ3g4aqwXSAoYChDddTsWI1G5RDACqN2MOKNqPuwf2IyLTNA3c-MjBgyg4ww3M+ehzp8WD7PUC56t8dDkAPb9G7YzLvY9GO3SAtW9xzhmkm3Pb-zFtxB3Qd4FwZOw6OYhdssNEiAhFB6YMKDjrge3lv0klLEBqiTHPzh72V4qcvsJ2HAcHQguCPpM7QK2sOM0LnFOfV0edA6bOe6GItD1g3Y5VjMABm2jmPoB166kX3sSUteI9zcwdAZLfkXM+nbHUk-8yadKN6ZwqQtbay4QdShA8b-Pgxc5u+CAgc2v+Wv8I6Ov09QjO76jCvn4+yv0wwN82sp4tMGL0uH8fSic3zJ9eYHzUL-YkqpTiSHNLrTmzI5gmTpGqTmc8+TKRxOvIULITJkkQchOBykcy7CRD2OY6CIEcQ3iQ7MXQB7uxIckdMNDMyUKRLWQhy8WQ4LYTaehRFBg4OwfQthUIQQSyIV0Nhkxpj9BEavcRC9KjCLoUgjIQjkGqJUfIhsGsvj90Pl4CGjJuCWHyKYCIABrNa2gogmAsNYOwDgNh1CtPwF6WVObAjLE4me7CSEL2cZCci2jUhEH5ggTKRoIYNWiutTuB0KSEBylIQgKJh6RCMOoUwpVLBsVcf4vxWiG4XzwFgFxJR8D01CK-JgdQIk2h3JsHOphpDs1WIgaMIBkjan6ECMcXApBcAGhFGIdjuCCCadLVpKQsCdOwKpCAWAuDLhAOEKx0RbFxAcE0hAEyWCHlhDMp00BFggBRCzFgnpzlAiyCTK4TpTR3IgIM7asV4pJQcEAA noborder}} </WRAP>
  
 <callout title="Voltages - Currents - True Power - Apparent and Reactive Power"> <callout title="Voltages - Currents - True Power - Apparent and Reactive Power">
Zeile 711: Zeile 710:
 </panel> </panel>
  
-<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlczMtQ28DCkFyj19LtIjtdm87EjK-WKEXDNdZQqe+eW9ah0l3ciMJFxywwyQG6OlE1MgDHtiO5fXY2KTyis3wy+L59Mpn3dcmx9PS5sH4zf6CI64GJ9JrJNRHNQKAAyDHBkEhsN+ULh7CwSLAqPRsQ2JCSROkaRUiKEEKxFVJuSOKgAcmdbvDXq4SSVxmzrrwwOxpvczmTivzBXSSgAlWkvcRvLl-DhcQoYaCUBTpbDsQQyjEzeWMJpKzjgBhqjVQJywchgJDsaiQAoESTsCAwHV6slXfYYQ73Eam1XqxU3aCeEj4J2IUgYO2QHwekUpOWA97JuEwwELDOYkHC8bmhTrJaSh6DOHDCtls5F1RJa7pwvQgYCabG2tNH05TG1IJia69faN0OOwT9zPKOEkNRcHUAYxA07U8UZ6Vg8HQW-QTiYOAQOITaATuAgPTg46X064M7NWqOgnMA-mrGfd1n2DgzHYCGgUwYpDUHGCQCqQ3Jvi81DtIqpSTuScEPLe3ZAde4GDKkN4YeBUHLFyKH1uBt5zNIlTEbUeD7MRBqFHBmxCOMNGXDCJY5hRswUnKjGQSM9EcgR-IcTBDFXPxdbpmx4pCpRInITxZyMd2PRdsKEnXGAhBvsRdGCBJjFigKbTLHJwnVKsCjFOWakabwg63uRuCYepWDxBxclsURGlEa5HSOHIFCKNJHQFL4ahaHohi6AAwgArkEQTcAAdpYDiiDZPhuBAbjPAgkK4SAiKmNoAAmRgAJYJUYAAi3DhEYkWmAlCXcPOlilQ1RgGAYCWZKVliaEYgRBOVNh1bF8VJSlNyQB0GA+PybyUCFIAAJK+Xa6WnrMt60LiJHSGtBCXO4-IkIwDA+MsxYHVITBJHaxa0Etq2pXakLmnNdrTIteXPbMSDMABZ5gFyAG7VB4AHZChTop94BgFwP0Hcw6kfSQyPA74CgsqlNKFPskgqsFl3gNju7mdQZ5MEUQFLQAqr5SjYgMTCMOwF2qCA9M4wIlyTB45CXBgyjEwwpM9C0TD4-alwU5j0hi0oN2QJTj1HGDaj04WTQ0MzykZOM2bAmmQmPBcJYgh2qXsCQPhHEk7CbTSeVc48i1MMwExujLCjE24vk4ti6JsxA5oI3tBT+zbvP7A7Ide87vk5cWzg3HzMzEzQif-UdAw5Td5102cakUvwLRkWcbZYaX7bKOWvRV-X3blpXMwIbWxbXEhBYkbhl3mRStSpbNcNqBMKoIMwvsoqluDo76WDqRAiOiNQPiL0CcPqytjhMBUyML5UIv4tkq6ORpiHxJ5p8lKIKBw8siBw7lHO-Y6a8IM8jIJOz4OZ6Y0hLytHbSMIBYjrk6OARQVopBcDCvoUIFhrB2EEP-dm8xECnVAa+GAmwIBYEwlwQI2gQgmEQREBw-8DwqARpAJAkIwFAl-HCJcLA14sHdOwyBKQEbxA4BAh0kC4ERRinFRKyVBBAA noborder}} </WRAP>+<WRAP>{{url>https://www.falstad.com/circuit/circuitjs.html?running=false&ctz=CQAgzCAMB0l5AWAnC1b0DYrTAdiWBhrgBxIIYlgCMuuWATNSAnCAKyQcCmAtNdQBQADxC8M1JCAFTeyBNIYMW0kiAAKACwCGAZ24AdXQDUA9gBsALtoDm3XSLEMkWakrHUyi9is8gAytYATkZmVrb2gjZiGAhqYAgK4nHgGFzpggDuTikJSQxgynlQWU6x4Ik58ZWQggAOToXgbo1FlRDMtQ28DCkFyj19LuDSJdm87EjK-WKEXDNdZQqe+eW98aOLcsMMJFzbjJAbnaUTUyC7+8iMe2Nik8orYteqClsPFyln07cdJd0fBhsb4XJp-WpA3AxPpNZJqIFqBQAGQYgkh0PhtzhF3YWGRYDRkCh2KeJLSKiRQnR2OKNKBKgAcqcXgjnsMnrVxiysWB2D8MuNYtUkry2m9BAAlDGvGLskhvUaccAMDDQSgK9LQdiS6UzcQ7JpcZhKwqq9VQJywchgJDsaiQAoESTsCAwbVS7GXWU3dKKrimtXyi1yaCeEj4B2IUgYG2QHxu05CmUgjmJmEDQGGtOY-aA26cpafNQ9crFAuDeHDCsVcXjFXLIO8W6puvpjwtBanGZewYXfOCIJiW69fbNoNG2qD+FNTFqLjagDGIFny+Vvpg8Eg6G36CcTBwCFxcbQcdwEB6cAHy5z17XFqBgnMQ-mrGffbn2DgxoQ0CmDFI1AxgkvKkHcTZGkG1CVC2q4zIB07KAWJA3vBfYCjkqRcPE5IFlBDbLJQMpIdhRrtDhgh4PscyggMhQIaMzBCOMdE0VUrG1JRszkqSLFPIx0jMnKIrceOpy8Y29ZERRuBUXyaGzLs8n8UxCk3j0TRehxMlvmAhA6dxDHSVRim0qKNYMQJzEmZUJYKGWpy-Hp4HviUnHxHpJEWUIbnuVgyGYV5jhyBQijGYxBS+GoWh6IYugAMIAK5BEE3AAHaWA4ohNj4bgdO4UFQg2IBIqY2gACZGAAlqlRgACLcOERhxaYqWpdwC6WJVLVGAYBipZklWWJoRiBEE1U2E1SUpelmXPJAjEYD4vA2q4hFFQAkkFNo5Wesz+bQeLSMsW0EBc7jLSQjAMD4ywKKiWU2lITAiuQFy0JFICbQ9SBQiqS02tMa2qJ9J3MP+55gEG-6HVB4AnVChTEgD4BgFwG2gyj-0kMwumIkdIBMll6KFPskj+hFt3gITe52dQ55MEUgEfQAqkFSjwnJPRM9dN3A6zRMCDisiSHdGDKJTDDU1z0z2h4tpvRAlPUFLShPZA9PvUCMNqKzdZgi06n8mBgLAh8MEgus9znJ2WXsCQPhAkk7C7eiRX8-chFMMwEwum9ChK-dHsc8S7C+yqaP4wUQV2w7SoTC7vtu0FCC4HdzjPJMrGUzQydIGD50p0910sw5-rkvwLTUeWAhFOXNfsV2dnl708nVx2M4N628n+ZppR4TK-dV0Fi0o8WJoIMwAdBbgOOozEWC6YrwNfdIPiLxc-p6ejohMBUOML5UEsEtk8T0r5dz+bpfmnxkogoCjyyICjhXL449prwgjz0gkvOwznpjSCXvMRA4YQCxE1J0EYLQuBSC4NFfQoQLDWDsIIABvNgFxCwOA7A-EIBYCwhaQI2gQgmCQREBwADDwqDRluKE2DHbQHhKuKhitXQsAgIrD8uQOCQLtCMeBsVErJTShlQQQA noborder}} </WRAP>
  
 <callout title="Voltages - Currents - True Power - Apparent and Reactive Power"> <callout title="Voltages - Currents - True Power - Apparent and Reactive Power">
Zeile 850: Zeile 849:
 <panel type="info" title="Exercise 7.1.1 Power and Power Factor I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 7.1.1 Power and Power Factor I"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-A passive component is fed by a sinusoidal AC voltage with the RMS value $U=230~\rm V$ and $f=50.0~\rm Hz$. The RMS current on this component is $I=5.00~\rm A$ with a phase angle of $\varphi=60°$.+A passive component is fed by a sinusoidal AC voltage with the RMS value $U=230~\rm V$ and $f=50.0~\rm Hz$. The RMS current on this component is $I=5.00~\rm A$ with a phase angle of $\varphi=+60°$.
  
-  - Draw the equivalent circuits based on a series and on a parallel circuit. +1. Draw the equivalent circuits based on a series and a parallel circuit. \\
-  - Calculate the equivalent components for both circuits. +
-  - Calculate the real power, the reactive power, and the apparent power based on the equivalent components for both circuits from 2. . +
-  - Check the solutions from 3. via direct calculation based on the input in the task above. +
- +
-<button size="xs" type="link" collapse="Loesung_7_1_1_1_Rechnung">{{icon>eye}} Result for 1.</button><collapse id="Loesung_7_1_1_1_Rechnung" collapsed="true"> +
  
 +#@HiddenBegin_HTML~71111,Result~@#
 {{drawio>electrical_engineering_2:Sol711EquivCirc.svg}} {{drawio>electrical_engineering_2:Sol711EquivCirc.svg}}
 +#@HiddenEnd_HTML~71111,Result~@#
  
-</collapse>+2. Calculate the equivalent components for both circuits. \\
  
-<button size="xs" type="link" collapse="Loesung_7_1_1_2_Rechnung">{{icon>eye}} Result for 2.</button><collapse id="Loesung_7_1_1_2_Rechnung" collapsed="true"> +#@HiddenBegin_HTML~71112,Solution~@#
  
 The apparent impedance is: The apparent impedance is:
Zeile 878: Zeile 874:
 \end{align*} \end{align*}
  
 +\\ \\
 +For the **parallel circuit**, the impedances add up like ${{1}\over{R_p}} + {{1}\over{{\rm j}\cdot X_{Lp}}}= {{1}\over{\underline{Z}}} $ with $\underline{Z} = {{U}\over{I}}\cdot e^{j\cdot \varphi}$. \\
 +
 +There are multiple ways to solve this problem. Two ways shall be shown here:
 +
 +=== with the Euler representation ===
 +Given the formula $\underline{Z} = {{U}\over{I}}\cdot e^{j\cdot \varphi}$ the following can be derived:
 +\begin{align*} 
 +{{1}\over{\underline{Z}^{\phantom{A}}}} &= {{I}\over{U}}\cdot e^{-j\cdot \varphi} \\
 +                                        &= {{1}\over{Z}}\cdot e^{-j\cdot \varphi} &&= {{1}\over{R_p}} + {{1}\over{{\rm j}\cdot X_{Lp}}}  \\
 +                                        &= {{1}\over{Z}}\cdot \left( \cos(\varphi) - {\rm j}\cdot \sin(\varphi) \right) &&= {{1}\over{R_p}} - {{\rm j}\over{X_{Lp}}}  \\
 +\end{align*}
 +
 +Therefore, the following can be concluded:
 +\begin{align*} 
 +{{1}\over{Z}}\cdot \cos(\varphi)        &= {{1}\over{R_p}}           &&\rightarrow && R_p    &= {{Z}\over{\cos(\varphi)}}  \\
 +- {\rm j}\cdot \sin(\varphi)            &= - {{\rm j}\over{ X_{Lp}}} &&\rightarrow && X_{Lp} &= {{Z}\over{\sin(\varphi)}}  \\
 +\end{align*}
  
-For the **parallel circuit**, the impedances add up like ${{1}\over{R_p}} + {{1}\over{{\rm j}\cdot X_{Lp}}}{{1}\over{\underline{Z}}} $. \\ +=== with the calculated values of the series circuit === 
-The easiest thing is here to use the formulas of $R_s$ and $X_{Ls}$ from before:+Another way is to use the formulas of $R_s$ and $X_{Ls}$ from before.
  
 \begin{align*}  \begin{align*} 
Zeile 888: Zeile 902:
                                                   &=& {        {\cos \varphi - {\rm j} \cdot \sin \varphi }       \over{Z}} \\                                                   &=& {        {\cos \varphi - {\rm j} \cdot \sin \varphi }       \over{Z}} \\
 \end{align*} \end{align*}
 +
 +Therefore 
  
 Now, the real and imaginary part is analyzed individually. First the real part: Now, the real and imaginary part is analyzed individually. First the real part:
Zeile 893: Zeile 909:
 \begin{align*}  \begin{align*} 
 {{1}\over{R_p}}   &=& {{\cos \varphi}\over{Z}}  \\ {{1}\over{R_p}}   &=& {{\cos \varphi}\over{Z}}  \\
-\rightarrow R_p   &=& {{Z}\over{\cos \varphi}} &=& {{46 ~\Omega}\over{\cos 60°}} = \boldsymbol{92 ~\Omega}+\rightarrow R_p   &=& {{Z}\over{\cos \varphi}} &=& {{46 ~\Omega}\over{\cos 60°}} 
 \end{align*} \end{align*}
  
 \begin{align*}  \begin{align*} 
 {{1}\over{X_{Lp}}}  &= {{\sin \varphi}\over{Z}} & \\ {{1}\over{X_{Lp}}}  &= {{\sin \varphi}\over{Z}} & \\
-\rightarrow X_{Lp}  &= {{Z}\over{\sin \varphi}} = {{46 ~\Omega}\over{\sin 60°}} = 53.1 ~\Omega \\ +\rightarrow X_{Lp}  &= {{Z}\over{\sin \varphi}} = {{46 ~\Omega}\over{\sin 60°}} \\ 
-\rightarrow L_p     &= {{46 ~\Omega}\over{2\pi \cdot 50~\rm Hz \cdot \sin 60°}} &= \boldsymbol{169 ~\rm mH}+\rightarrow L_p     &= {{46 ~\Omega}\over{2\pi \cdot 50~\rm Hz \cdot \sin 60°}} 
 \end{align*} \end{align*}
  
-</collapse>+#@HiddenEnd_HTML~71112,Solution ~@#
  
 +#@HiddenBegin_HTML~71113,Result~@#
 +For the series circuit:
 +\begin{align*} 
 +R_s      &= {23 ~\Omega} \\
 +L_s      &= {127 ~\rm mH} \\
 +\end{align*}
  
-<button size="xs" type="link" collapse="Loesung_7_1_1_3_Endergebnis">{{icon>eye}} Result for 3. </button><collapse id="Loesung_7_1_1_3_Endergebnis" collapsed="true"> +For the parallel circuit: 
 +\begin{align*}  
 +R_p      &{92 ~\Omega} \\ 
 +L_p      &= {169 ~\rm mH} \\ 
 +\end{align*} 
 +#@HiddenEnd_HTML~71113,Result~@#
  
 +3. Calculate the real, reactive, and apparent power based on the equivalent components for both circuits from 2. . \\
 +
 +#@HiddenBegin_HTML~71114,Solution~@#
 +The general formula for the apparent power is $\underline{S} = U \cdot I \cdot e^{\rm j\varphi}$. \\ By this, the following can be derived:
 +\begin{align*} 
 +\underline{S} &= U \cdot I  \cdot e^{\rm j\varphi} \\
 +              &= Z \cdot I^2 \cdot e^{\rm j\varphi}     &&= \underline{Z} \cdot I^2 \\
 +              &= {{U^2}\over{Z}} \cdot e^{\rm j\varphi} &&= {{U^2}\over{\underline{Z}^{*\phantom{I}}}} \\
 +\end{align*}
 +
 +These formulas are handy for both types of circuits to separate the apparent power into real part (real power) and complex part (apparent power):
 +  - for **series circuit**: $\underline{S} =\underline{Z} \cdot I^2 $ with $\underline{Z} = R + {\rm j} X_L$ 
 +  - for **parallel circuit**: $\underline{S} ={{U^2}\over{\underline{Z}^{*\phantom{I}}}} $ with ${{1} \over {\underline{Z}^{\phantom{I}}} }   = {{1}\over{R}} + {{1}\over{{\rm j} X_L}} \rightarrow {{1} \over {\underline{Z}^{*\phantom{I}}} }   = {{1}\over{R}} + {{\rm j}\over{ X_L}} $ 
 +\\ 
 +Therefore: 
 ^                  ^ series circuit ^ parallel circuit ^ ^                  ^ series circuit ^ parallel circuit ^
 | active   power   | \begin{align*} P_s &= R_s \cdot I^2 \\ &= 23.0 ~\Omega \cdot (5{~\rm A})^2 \\ &= 575 {~\rm W} \end{align*} | \begin{align*} P_p &= {{U_p^2}\over{R_p}} \\ &= {{(230{~\rm V})^2}\over{92~\Omega}} = 575 {~\rm W}   \end{align*} | | active   power   | \begin{align*} P_s &= R_s \cdot I^2 \\ &= 23.0 ~\Omega \cdot (5{~\rm A})^2 \\ &= 575 {~\rm W} \end{align*} | \begin{align*} P_p &= {{U_p^2}\over{R_p}} \\ &= {{(230{~\rm V})^2}\over{92~\Omega}} = 575 {~\rm W}   \end{align*} |
-| reactive power   | \begin{align*} Q_s &Z_{Ls} \cdot I^2 \\ &= 39.8 ~\Omega \cdot (5{~\rm A})^2 \\ &= 996 {~\rm Var} \end{align*} | \begin{align*} Q_p &= {{U_p^2}\over{Z_{Lp}}} \\ &= {{(230{~\rm V})^2}\over{53.1 ~\Omega}} = 996 {~\rm Var}   \end{align*} | +| reactive power   | \begin{align*} Q_s &X_{Ls} \cdot I^2 \\ &= 39.8 ~\Omega \cdot (5{~\rm A})^2 \\ &= 996 {~\rm Var} \end{align*} | \begin{align*} Q_p &= {{U_p^2}\over{X_{Lp}}} \\ &= {{(230{~\rm V})^2}\over{53.1 ~\Omega}} = 996 {~\rm Var}   \end{align*} | 
-| apparent power   | \begin{align*} S_s &= \sqrt{P_s^2 - Q_s^2} \\ &= I^2 \cdot \sqrt{R_s^2 + Z_{Ls}^2} \\ &= 1150 {~\rm VA} \end{align*} | \begin{align*} S_p &= \sqrt{P_s^2 - Q_s^2} \\ &= U^2 \cdot \sqrt{{{1}\over{R_p^2}} + {{1}\over{Z_{Lp}^2}}} \\ &= 1150 {~\rm VA}   \end{align*} |+| apparent power   | \begin{align*} S_s &= \sqrt{P_s^2 - Q_s^2} \\ &= I^2 \cdot \sqrt{R_s^2 + X_{Ls}^2} \\ &= 1150 {~\rm VA} \end{align*} | \begin{align*} S_p &= \sqrt{P_s^2 - Q_s^2} \\ &= U^2 \cdot \sqrt{{{1}\over{R_p^2}} + {{1}\over{X_{Lp}^2}}} \\ &= 1150 {~\rm VA}   \end{align*} |
  
-</collapse>+#@HiddenEnd_HTML~71114,Solution ~@#
  
 +4. Check the solutions from 3. via direct calculation based on the input in the task above. \\
  
-<button size="xs" type="link" collapse="Loesung_7_1_1_4_Endergebnis">{{icon>eye}} Result for 4. </button><collapse id="Loesung_7_1_1_4_Endergebnis" collapsed="true"> +<button size="xs" type="link" collapse="Loesung_7_1_1_4_Endergebnis">{{icon>eye}} Solution </button><collapse id="Loesung_7_1_1_4_Endergebnis" collapsed="true"> 
  
 active power: active power:
Zeile 933: Zeile 976:
 apparent power: apparent power:
 \begin{align*}  \begin{align*} 
-&= U \cdot I \\+&= U \cdot I \\
   &= 230{~\rm V} \cdot 5{~\rm A}  \\   &= 230{~\rm V} \cdot 5{~\rm A}  \\
   &= 1150 {~\rm VA}   &= 1150 {~\rm VA}
Zeile 945: Zeile 988:
 A magnetic coil shows at a frequency of $f=50.0 {~\rm Hz}$ the voltage of $U=115{~\rm V}$ and the current $I=2.60{~\rm A}$ with a power factor of $\cos \varphi = 0.30$ A magnetic coil shows at a frequency of $f=50.0 {~\rm Hz}$ the voltage of $U=115{~\rm V}$ and the current $I=2.60{~\rm A}$ with a power factor of $\cos \varphi = 0.30$
  
-  - Calculate the real power, the reactive power, and the apparent power .+  - Calculate the real power, the reactive power, and the apparent power.
   - Draw the equivalent parallel circuit. Calculate the active and reactive part of the current.   - Draw the equivalent parallel circuit. Calculate the active and reactive part of the current.
   - Draw the equivalent series circuit. Calculate the ohmic and inductive impedance and the value of the inductivity.   - Draw the equivalent series circuit. Calculate the ohmic and inductive impedance and the value of the inductivity.
Zeile 1029: Zeile 1072:
 <button size="xs" type="link" collapse="Loesung_7_1_3_1_Rechnung">{{icon>eye}} Result for 1.</button><collapse id="Loesung_7_1_3_1_Rechnung" collapsed="true">  <button size="xs" type="link" collapse="Loesung_7_1_3_1_Rechnung">{{icon>eye}} Result for 1.</button><collapse id="Loesung_7_1_3_1_Rechnung" collapsed="true"> 
  
-The active power is $P = 1.80 kW$. \\ +The active power is $P = 1.80 ~\rm kW$. \\ \\ 
-The apparent power is $S = U \cdot I = 220V \cdot 20A = 4.40 kVA$. \\ +The apparent power is $S = U \cdot I = 220 ~\rm V \cdot 20 ~\rm A = 4.40 ~\rm kVA$. \\ \\ 
-The reactive power is $Q = \sqrt{S^2 - P^2} = \sqrt{(4.40 kVA)^2 - (1.80 kW)^2} = 4.01 kVar$ \\ +The reactive power is $Q = \sqrt{S^2 - P^2} = \sqrt{(4.40 ~\rm kVA)^2 - (1.80 ~\rm kW)^2} = 4.01 ~\rm kVar$ \\ \\ 
-The power factor is $\cos \varphi = {{P}\over{S}} = {{1.80 kW}\over{4.40 kVA}} = 0.41$.+The power factor is $\cos \varphi = {{P}\over{S}} = {{1.80 ~\rm kW}\over{4.40 ~\rm kVA}} = 0.41$.
  
 </collapse> </collapse>
Zeile 1212: Zeile 1255:
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
 +
 +#@TaskTitle_HTML@#7.2.2 Motor on 3-Phase System I#@TaskText_HTML@#
 +
 +A three-phase motor is connected to an artificial three-phase system and can be configured in wye or delta configuration.
 +  * The voltage measured on a single coil shall always be $230 ~\rm V$. 
 +  * The current measured on a single coil shall always be $10 ~\rm A$.
 +  * The phase shift for every string is $25°$ 
 +
 +  - The motor shall be in wye configuration. \\ Write down the string voltage, phase voltage, string current, phase current, and active power
 +  - The motor shall be in delta configuration. \\ Write down the string voltage, phase voltage, string current, phase current, and active power
 +  - Compare the results
 +#@TaskEnd_HTML@#
 +
 +#@TaskTitle_HTML@#7.2.3 Heater on 3-Phase System#@TaskText_HTML@#
 +
 +A three-phase heater with given resistors is connected to the $230~\rm V$/$400~\rm V$ three-phase system. The heater shows purely ohmic behavior and can be configured in wye or delta configuration. \\
 +
 +  - The heater is configured in a delta configuration and provides a constant heating power of $6 ~\rm kW$.
 +    - Calculate the resistor value of a single string in the heater
 +    - Calculate the RMS values of the string currents and phase currents.
 +  - The heater with the same resistors as in 1. is now configured in a wye configuration. 
 +    - Calculate the RMS values of the string currents and phase currents.
 +    - Compare the heating power in delta configuration (1.) and wye configuration (2.) 
 +#@TaskEnd_HTML@#
 +
 +#@TaskTitle_HTML@#7.2.4 Motor on 3-Phase System II#@TaskText_HTML@#
 +
 +A three-phase motor is connected to a three-phase system with a phase voltage of $400 ~\rm V$. The phase current is $16 ~\rm A$ and the power factor $0.9$. \\
 +Calculate the active power, reactive power, and apparent power.
 +
 +#@TaskEnd_HTML@#
 +
 +
 +#@TaskTitle_HTML@#7.2.5 Motor on 3-Phase System III#@TaskText_HTML@#
 +
 +A symmetrical and balanced three-phase motor of a production line shall be configured in a star configuration and provide a power of $17~\rm kW$ with a power factor of $0.75$. The voltage on a single string is measured to be $135 ~\rm V$. \\
 +Calculate the string current.
 +
 +#@TaskEnd_HTML@#
  
 ==== Related Links ==== ==== Related Links ====