Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:polyphase_networks [2024/11/17 10:30] – [7.2.2 Three-Phase System] mexleadminelectrical_engineering_2:polyphase_networks [2025/06/24 00:40] (aktuell) mexleadmin
Zeile 362: Zeile 362:
 ==== 7.2.2 Three-Phase System ==== ==== 7.2.2 Three-Phase System ====
  
-See also: [[https://de.mathworks.com/videos/series/what-is-3-phase-power.html|MATHWORKS Onramp Video: What is 3-phase power?]]+See also: __ BROKEN-LINK:[[https://de.mathworks.com/videos/series/what-is-3-phase-power.html|MATHWORKS Onramp Video: What is 3-phase power?]]LINK-BROKEN__ 
  
 The most commonly used polyphase system is the three-phase system. The three-phase system has advantages over a DC system or single-phase AC system: The most commonly used polyphase system is the three-phase system. The three-phase system has advantages over a DC system or single-phase AC system:
Zeile 852: Zeile 852:
 A passive component is fed by a sinusoidal AC voltage with the RMS value $U=230~\rm V$ and $f=50.0~\rm Hz$. The RMS current on this component is $I=5.00~\rm A$ with a phase angle of $\varphi=+60°$. A passive component is fed by a sinusoidal AC voltage with the RMS value $U=230~\rm V$ and $f=50.0~\rm Hz$. The RMS current on this component is $I=5.00~\rm A$ with a phase angle of $\varphi=+60°$.
  
-1. Draw the equivalent circuits based on a series and a parallel circuit. \\+1. Draw the equivalent circuits based on a series and a parallel circuit of two components. \\
  
 #@HiddenBegin_HTML~71111,Result~@# #@HiddenBegin_HTML~71111,Result~@#
Zeile 1264: Zeile 1264:
   * The phase shift for every string is $25°$    * The phase shift for every string is $25°$ 
  
-  - The motor shall be in wye configuration. \\ Write down the string voltage, phase voltage, string current, phase current, and active power +1. The motor shall be in wye configuration. \\  
-  - The motor shall be in delta configuration. \\ Write down the string voltage, phase voltage, string current, phase current, and active power +Write down the string voltage, phase voltage, string current, phase current, and active power 
-  - Compare the results+ 
 +#@HiddenBegin_HTML~7221,Solution~@# 
 + 
 +  * The **string voltage** \( U_\rm s \) is always the voltage measured on a single coil ($230 ~\rm V$).  
 +  * The **string current** \( I_\rm s \) is always the current measured on a single coil ($10 ~\rm A$). 
 + 
 +In a **wye** configuration: 
 +  * The **phase voltage** \( U_{\rm ph} = U_{\rm 12} = U_{\rm 23} = U_{\rm 31} \) is the **string voltage** \( U_\rm s \) times \( \sqrt{3} \) 
 +  * The **phase current** \( I_{\rm ph} \) is just the **string current** \( I_\rm s \)  
 + 
 +So, we can compute: 
 +  * **Phase voltage** \( U_{\rm ph} = \sqrt{3} \cdot U_{\rm s} = \sqrt{3} \cdot 230 ~\rm V \approx 398.37 ~\rm V \) 
 +  * **Active power**: 
 + 
 +\begin{align*} 
 +P &= \sqrt{3} \cdot U_{\rm s} \cdot I_{\rm ph} \cdot \cos(\phi) \\ 
 +  &= \sqrt{3} \cdot 398.37 \cdot 10 \cdot \cos(25^\circ) \\ 
 +  &= 1.732 \cdot 398.37 \cdot 10 \cdot 0.9063 \, \text{W} \\ 
 +  &\approx 6254.79\, \text{W} 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~7221,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~72210,Result~@# 
 + 
 +  - string voltage \( U_{\rm s} = 230\, \text{V} \) 
 +  - phase voltage \( U_{\rm ph} = 398\, \text{V} \) 
 +  - string current \( I_{\rm s} = 10\, \text{A} \) 
 +  - phase current \( I_{\rm ph} = 10\, \text{A} \) 
 +  - and active power \( P = 6254.79\, \text{W} \) 
 + 
 +#@HiddenEnd_HTML~72210,Result~@# 
 + 
 +2. The motor shall be in delta configuration. \\  
 +Write down the string voltage, phase voltage, string current, phase current, and active power 
 + 
 +#@HiddenBegin_HTML~7222,Solution~@# 
 + 
 +  * The **string voltage** \( U_\rm s \) is always the voltage measured on a single coil ($230 ~\rm V$).  
 +  * The **string current** \( I_\rm s \) is always the current measured on a single coil ($10 ~\rm A$). 
 + 
 +In a **delta** configuration: 
 +  * The **phase voltage** \( U_{\rm ph} = U_{\rm 12} = U_{\rm 23} = U_{\rm 31} \) is just the **string voltage** \( U_\rm s \) \) 
 +  * The **phase current** \( I_{\rm ph} \) is the **string current** \( I_\rm s \) times \( \sqrt{3}   
 + 
 +So, we can compute: 
 +  * **Phase current** \( I_{\rm ph} = \sqrt{3} \cdot I_{\rm s} = \sqrt{3} \cdot 10 ~\rm V \approx 17.32 ~\rm A \) 
 +  * **Active power**: 
 + 
 +\begin{align*} 
 +P &= \sqrt{3} \cdot U_{\rm s} \cdot I_{\rm ph} \cdot \cos(\phi) \\ 
 +  &= \sqrt{3} \cdot 200 \cdot 17.32 \cdot \cos(25^\circ) \\ 
 +  &= 1.732 \cdot 200 \cdot 17.32 \cdot 0.9063 \, \text{W} \\ 
 +  &\approx 6254.79\, \text{W} 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~7222,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~72220,Result~@# 
 + 
 +  - string voltage \( U_{\rm s} = 230\, \text{V} \) 
 +  - phase voltage \( U_{\rm ph} = 230\, \text{V} \) 
 +  - string current \( I_{\rm s} = 10\, \text{A} \) 
 +  - phase current \( I_{\rm ph} = 17.32\, \text{A} \) 
 +  - and active power \( P = 6254.79\, \text{W} \) 
 + 
 +#@HiddenEnd_HTML~72220,Result~@# 
 + 
 +3. Compare the results 
 + 
 +#@HiddenBegin_HTML~7223,Solution ~@# 
 + 
 +^ Configuration ^ String Voltage (V) ^ Phase Voltage (V) ^ Line Voltage (V) ^ String Current (A) ^ Phase Current (A) ^ Line Current (A) ^ Power (W)     | 
 +| Wye           | 230                 | 230                | 398.37           | 10                  | 10                | 10               | 6254.79       | 
 +| Delta         | 230                 | 230                | 230              | 10                  | 10                | 17.32            | 6254.79       | 
 + 
 +**Conclusion:** 
 +Both configurations deliver the same active power to the motor. However: 
 +  * In **wye**, voltage across each phase is lower, resulting in lower current per line. 
 +  * In **delta**, current per line is higher, even though voltage across each phase equals line voltage. 
 + 
 +#@HiddenEnd_HTML~7223,Solution ~@# 
 #@TaskEnd_HTML@# #@TaskEnd_HTML@#
  
Zeile 1273: Zeile 1355:
 A three-phase heater with given resistors is connected to the $230~\rm V$/$400~\rm V$ three-phase system. The heater shows purely ohmic behavior and can be configured in wye or delta configuration. \\ A three-phase heater with given resistors is connected to the $230~\rm V$/$400~\rm V$ three-phase system. The heater shows purely ohmic behavior and can be configured in wye or delta configuration. \\
  
-  - The heater is configured in a delta configuration and provides a constant heating power of $6 ~\rm kW$. +1. The heater is configured in a delta configuration and provides a constant heating power of $6 ~\rm kW$. \\ 
-    Calculate the resistor value of a single string in the heater +1.a Calculate the resistor value of a single string in the heater. \\ 
-    Calculate the RMS values of the string currents and phase currents. +1.b Calculate the RMS values of the string currents and phase currents. \\ 
-  - The heater with the same resistors as in 1. is now configured in a wye configuration.  + 
-    Calculate the RMS values of the string currents and phase currents. +#@HiddenBegin_HTML~7231,Solution~@# 
-    Compare the heating power in delta configuration (1.) and wye configuration (2.) +===== 1. Delta configuration ===== 
 +The line-to-line (string) voltage in delta is the system line voltage   
 +\[ 
 +U_{\mathrm s,\Delta}=U_{\mathrm{LL}}=400~\mathrm{V}. 
 +\] 
 + 
 +**(a)  Resistor of one string** 
 + 
 +Purely ohmic, total power in delta   
 +\[ 
 +P_\Delta = 3\;\frac{U_{\mathrm s,\Delta}^{2}}{R}. 
 +\] 
 + 
 +Solve for \(R\): 
 +\begin{align*} 
 +R &= 3\frac{U_{\mathrm s,\Delta}^{2}}{P_\Delta} 
 +   =3\frac{(400~\mathrm{V})^{2}}{6000~\mathrm{W}} 
 +   =\;80~\boldsymbol{\Omega}. 
 +\end{align*} 
 + 
 +**(b)  Currents** 
 + 
 +String (coil) current 
 +\[ 
 +I_{\mathrm s,\Delta}= \frac{U_{\mathrm s,\Delta}}{R} 
 +                    = \frac{400}{80}=5.00~\mathrm{A}. 
 +\] 
 + 
 +In delta the **phase current equals the string current**: 
 +\[ 
 +I_{\mathrm{ph},\Delta}=I_{\mathrm s,\Delta}=5.00~\mathrm{A}. 
 +\] 
 + 
 +(The line current would be \(I_{\mathrm L,\Delta}= \sqrt3\,I_{\mathrm s,\Delta}=8.66~\mathrm{A}\), but is **not** required.) 
 +#@HiddenEnd_HTML~7231,Solution~@# 
 + 
 +#@HiddenBegin_HTML~72310,Result~@# 
 +  * resistor of one string \(R = 80~\Omega\) 
 +  * string current \(I_{\mathrm s,\Delta}=5.00~\mathrm{A}\) 
 +  * phase current \(I_{\mathrm{ph},\Delta}=5.00~\mathrm{A}\) 
 +#@HiddenEnd_HTML~72310,Result~@# 
 + 
 +2. The heater with the same resistors as in 1. is now configured in a wye configuration. \\ 
 +2.a Calculate the RMS values of the string currents and phase currents. \\ 
 +2.b Compare the heating power in delta configuration (1.) and wye configuration (2.) \\ 
 + 
 +#@HiddenBegin_HTML~7232,Solution~@# 
 +===== 2. Wye configuration (same resistors \(R=80~\Omega\)) ===== 
 +The string (phase-to-neutral) voltage is the system phase voltage   
 +\[ 
 +U_{\mathrm s,\mathrm Y}=U_{\mathrm{PN}}=230~\mathrm{V}. 
 +\] 
 + 
 +**(a)  Currents** 
 + 
 +String current 
 +\[ 
 +I_{\mathrm s,\mathrm Y}= \frac{U_{\mathrm s,\mathrm Y}}{R} 
 +                      = \frac{230}{80}=2.875~\mathrm{A}. 
 +\] 
 + 
 +In wye the **phase current equals the string current**: 
 +\[ 
 +I_{\mathrm{ph},\mathrm Y}=I_{\mathrm s,\mathrm Y}=2.875~\mathrm{A}. 
 +\] 
 + 
 +**(b)  Heating power in wye** 
 + 
 +Pure ohmic load: 
 +\begin{align*} 
 +P_{\mathrm Y} &= 3\;\frac{U_{\mathrm s,\mathrm Y}^{2}}{R} 
 +              = 3\;\frac{(230~\mathrm{V})^{2}}{80~\Omega} 
 +              \approx 1.984~\mathrm{kW}. 
 +\end{align*} 
 + 
 +--- 
 + 
 +===== Comparison ===== 
 +\[ 
 +\frac{P_{\mathrm Y}}{P_\Delta} = \frac{1.984~\mathrm{kW}}{6.000~\mathrm{kW}} 
 +                               \approx 0.331. 
 +\] 
 + 
 +The heater delivers only about **33 %** of the delta power when re-wired in wye. 
 +#@HiddenEnd_HTML~7232,Solution~@# 
 + 
 +#@HiddenBegin_HTML~72320,Result~@# 
 +  * string current \(I_{\mathrm s,\mathrm Y}=2.88~\mathrm{A}\) 
 +  * phase current \(I_{\mathrm{ph},\mathrm Y}=2.88~\mathrm{A}\) 
 +  * heating power \(P_{\mathrm Y}\approx1.98~\mathrm{kW}\) 
 +  * comparison: \(P_{\mathrm Y} \approx 0.33\,P_\Delta\) (wye power ≈ 33 % of delta power) 
 +#@HiddenEnd_HTML~72320,Result~@# 
 + 
 #@TaskEnd_HTML@# #@TaskEnd_HTML@#