Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:task_5.1.3_with_calc [2022/03/10 12:17] – [Bearbeiten - Panel] tfischerelectrical_engineering_2:task_1.1.3_with_calc [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1
Zeile 1: Zeile 1:
-<panel type="info" title="Task 5.1.3 Forces on Charges (exam task, ca 8% of a 60 minute exam, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> 
- 
-<WRAP right> 
-{{elektrotechnik_1:coulombkraftgeometriei.jpg?400}} 
-</WRAP> 
- 
-Given is an arrangement of electric charges located in a vacuum (see picture on the right). \\ 
-The charges have the following values:  \\ 
-$Q_1=7 μC$ (point charge) \\ 
-$Q_2=5 μC$ (point charge) \\ 
-$Q_3=0 C$ (infinitely extended surface charge) 
- 
-$\varepsilon_0=8.854\cdot 10^{-12}  F/m$  , $\varepsilon_r=1$ 
- 
-1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$. 
- 
-<button size="xs" type="link" collapse="Loesung_5_1_3_1_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_5_1_3_1_Tipps" collapsed="true"> 
-  * Which equation is to be used for the force effect of charges? 
-  * How can the distance between the two charges be determined? 
-</collapse> 
- 
-<button size="xs" type="link" collapse="Loesung_5_1_3_1_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_5_1_3_1_Lösungsweg" collapsed="true"> 
-\begin{align*} 
-F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {r^2}}} \quad && | \text{with } r=\sqrt{\Delta x^2 + \Delta y^2}  \\ 
-F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {\Delta x^2 + \Delta y^2}}} \quad && | \text{Insert numerical values, read off distances: } \Delta x = 5dm, \Delta y = 3dm  \\ 
-F_C &= {{{1} \over {4\pi\cdot 8,854\cdot 10^{-12}  F/m}} \cdot {{7 \cdot 10^{-6} C \cdot 5 \cdot 10^{-6} C} \over { (0.5m)^2 + (0.2m)^2}}}  
-\end{align*} 
-</collapse> 
- 
-<button size="xs" type="link" collapse="Loesung_5_1_3_1_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_1_3_1_Endergebnis" collapsed="true"> 
-\begin{align*} 
-|\vec{F}_C| = 1.084 N \rightarrow 1.1 N 
-\end{align*} 
- \\ 
-</collapse> 
- 
-2. is this force attractive or repulsive? 
- 
-<button size="xs" type="link" collapse="Loesung_5_1_3_2_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_5_1_3_2_Tipps" collapsed="true"> 
-  * What force effect do equally or oppositely charged bodies exhibit on each other? 
-</collapse> 
- 
-<button size="xs" type="link" collapse="Loesung_5_1_3_2_Endergebnis">{{icon>eye}} Solution </button><collapse id="Loesung_5_1_3_2_Endergebnis" collapsed="true"> 
-The force is repulsive because both charges have the same sign. \\ \\ \\ 
-</collapse> 
- 
-Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=100 kV/m$ results. \\ What force (magnitude) now results on $Q_1$? 
- 
-<button size="xs" type="link" collapse="Loesung_5_1_3_3_Tipps">{{icon>eye}} Tips for the solution</button><collapse id="Loesung_5_1_3_3_Tipps" collapsed="true"> 
-  * Which equation is to be applied for the force action in the homogeneous field? 
-</collapse> 
- 
-<button size="xs" type="link" collapse="Loesung_5_1_3_3_Lösungsweg">{{icon>eye}} Solution</button><collapse id="Loesung_5_1_3_3_Lösungsweg" collapsed="true"> 
-\begin{align*} 
-F_C &= E \cdot Q_1 \quad && | \text{Insert numerical values} \\ 
-F_C &= 100 \cdot 10^3 V/m \cdot 7 \cdot 10^{-6} C 
-\end{align*} 
-</collapse> 
- 
-<button size="xs" type="link" collapse="Loesung_5_1_3_3_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_1_3_3_Endergebnis" collapsed="true"> 
-\begin{align*} 
- |\vec{F}_C| = 0.7 N  
-\end{align*} \\ 
-</collapse> 
- 
- 
-</WRAP></WRAP></panel>