Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
| electrical_engineering_2:task_5.1.3_with_calc [2022/03/10 12:17] – [Bearbeiten - Panel] tfischer | electrical_engineering_2:task_1.1.3_with_calc [2024/03/12 23:51] (aktuell) – mexleadmin | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| - | <panel type=" | + | <panel type=" |
| <WRAP right> | <WRAP right> | ||
| - | {{elektrotechnik_1: | + | {{drawio> |
| </ | </ | ||
| Given is an arrangement of electric charges located in a vacuum (see picture on the right). \\ | Given is an arrangement of electric charges located in a vacuum (see picture on the right). \\ | ||
| The charges have the following values: | The charges have the following values: | ||
| - | $Q_1=7 | + | $Q_1=7 |
| - | $Q_2=5 | + | $Q_2=5 |
| - | $Q_3=0 C$ (infinitely extended surface charge) | + | $Q_3=0 |
| - | $\varepsilon_0=8.854\cdot 10^{-12} | + | $\varepsilon_0=8.854\cdot 10^{-12} |
| 1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$. | 1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$. | ||
| Zeile 23: | Zeile 23: | ||
| \begin{align*} | \begin{align*} | ||
| F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {r^2}}} \quad && | \text{with } r=\sqrt{\Delta x^2 + \Delta y^2} \\ | F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {r^2}}} \quad && | \text{with } r=\sqrt{\Delta x^2 + \Delta y^2} \\ | ||
| - | F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {\Delta x^2 + \Delta y^2}}} \quad && | \text{Insert numerical values, read off distances: } \Delta x = 5dm, \Delta y = 3dm \\ | + | F_C &= {{{1} \over {4\pi\cdot\varepsilon}} \cdot {{Q_1 \cdot Q_2} \over {\Delta x^2 + \Delta y^2}}} \quad && | \text{Insert numerical values, read off distances: } \Delta x = 5~\rm{dm}, \Delta y = 3~\rm{dm} |
| - | F_C &= {{{1} \over {4\pi\cdot 8,854\cdot 10^{-12} | + | F_C &= {{{1} \over {4\pi\cdot 8.854\cdot 10^{-12} |
| \end{align*} | \end{align*} | ||
| </ | </ | ||
| Zeile 30: | Zeile 30: | ||
| <button size=" | <button size=" | ||
| \begin{align*} | \begin{align*} | ||
| - | |\vec{F}_C| = 1.084 N \rightarrow 1.1 N | + | |\vec{F}_C| = 1.084 ~\rm{N} \rightarrow 1.1 ~\rm{N} |
| \end{align*} | \end{align*} | ||
| \\ | \\ | ||
| Zeile 45: | Zeile 45: | ||
| </ | </ | ||
| - | Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=100 kV/m$ results. \\ What force (magnitude) now results on $Q_1$? | + | Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=100 |
| <button size=" | <button size=" | ||
| Zeile 54: | Zeile 54: | ||
| \begin{align*} | \begin{align*} | ||
| F_C &= E \cdot Q_1 \quad && | \text{Insert numerical values} \\ | F_C &= E \cdot Q_1 \quad && | \text{Insert numerical values} \\ | ||
| - | F_C &= 100 \cdot 10^3 V/m \cdot 7 \cdot 10^{-6} C | + | F_C &= 100 \cdot 10^3 ~\rm{V/m} \cdot 7 \cdot 10^{-6} |
| \end{align*} | \end{align*} | ||
| </ | </ | ||
| Zeile 60: | Zeile 60: | ||
| <button size=" | <button size=" | ||
| \begin{align*} | \begin{align*} | ||
| - | | + | |
| \end{align*} \\ | \end{align*} \\ | ||
| </ | </ | ||