Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
electrical_engineering_2:task_1.1.4 [2022/03/10 12:18]
tfischer [Bearbeiten - Panel]
electrical_engineering_2:task_1.1.4 [2024/03/12 23:51] (aktuell)
mexleadmin
Zeile 1: Zeile 1:
-<panel type="info" title="Task 5.1.Variation: Forces on Charges (exam task, ca 8% of a 60 minute exam, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Task 1.2.6 Variation: Forces on Charges (exam task, ca 8% of a 60 minute exam, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
 <WRAP right> <WRAP right>
-{{elektrotechnik_1:coulombkraftgeometrieii.jpg?400}}+{{drawio>electrical_engineering_2:coulombkraftgeometrieii.svg}}
 </WRAP> </WRAP>
  
 Given is an arrangement of electric charges located in a vacuum (see picture on the right). \\ Given is an arrangement of electric charges located in a vacuum (see picture on the right). \\
 The charges have the following values:  \\ The charges have the following values:  \\
-$Q_1=5 μC$ (point charge) \\ +$Q_1=5   ~\rm{µC}$ (point charge) \\ 
-$Q_2=-10 μC$ (point charge) \\ +$Q_2=-10 ~\rm{µC}$ (point charge) \\ 
-$Q_3=0 C$ (infinitely extended surface charge)+$Q_3= 0  ~\rm{C}$ (infinitely extended surface charge)
  
-$\varepsilon_0=8.854\cdot 10^{-12}  F/m$  , $\varepsilon_r=1$+$\varepsilon_0=8.854\cdot 10^{-12}  ~\rm{F/m}$  , $\varepsilon_r=1$
  
 1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$. 1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$.
Zeile 17: Zeile 17:
 <button size="xs" type="link" collapse="Loesung_5_1_4_1_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_1_4_1_Endergebnis" collapsed="true"> <button size="xs" type="link" collapse="Loesung_5_1_4_1_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_1_4_1_Endergebnis" collapsed="true">
 \begin{align*} \begin{align*}
- |\vec{F}_C| = 1.321 N \rightarrow 1.3 N+ |\vec{F}_C| = 1.321 ~\rm{N\rightarrow 1.3 ~\rm{N}
 \end{align*} \end{align*}
  \\  \\
Zeile 28: Zeile 28:
 </collapse> </collapse>
  
-Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=500 kV/m$ results. \\ What force (magnitude) now results on $Q_1$?+Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=500 ~\rm{kV/m}$ results. \\  
 +What force (magnitude) now results on $Q_1$?
  
 <button size="xs" type="link" collapse="Loesung_5_1_4_3_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_1_4_3_Endergebnis" collapsed="true"> <button size="xs" type="link" collapse="Loesung_5_1_4_3_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_1_4_3_Endergebnis" collapsed="true">
 \begin{align*} \begin{align*}
- |\vec{F}_C| = 2.5 N + |\vec{F}_C| = 2.5 ~\rm{N}
 \end{align*} \\ \end{align*} \\
 </collapse> </collapse>