Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Letzte Überarbeitung Beide Seiten der Revision
electrical_engineering_2:task_1.1.5 [2022/03/10 12:00]
tfischer [Bearbeiten - Panel]
electrical_engineering_2:task_1.1.5 [2023/03/15 13:44]
mexleadmin
Zeile 1: Zeile 1:
-<panel type="info" title="Task 5.1.5 Variation: Forces on Charges (exam task, ca 8% of a 60 minute exam, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>+<panel type="info" title="Task 1.1.5 Variation: Forces on Charges (exam task, ca 8% of a 60 minute exam, WS2020)"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
 <WRAP right> <WRAP right>
-{{elektrotechnik_1:coulombkraftgeometrieiii.jpg?400}}+{{drawio>electrical_engineering_2:coulombkraftgeometrieiii.svg}}
 </WRAP> </WRAP>
  
 Given is an arrangement of electric charges located in a vacuum (see picture on the right). \\ Given is an arrangement of electric charges located in a vacuum (see picture on the right). \\
 The charges have the following values:  \\ The charges have the following values:  \\
-$Q_1=2 μC$ (point charge) \\ +$Q_1= 2 ~\rm{µC}$ (point charge) \\ 
-$Q_2=-4 μC$ (point charge) \\ +$Q_2=-4 ~\rm{µC}$ (point charge) \\ 
-$Q_3=0 C$ (infinitely extended surface charge)+$Q_3= 0 ~\rm{C}$ (infinitely extended surface charge)
  
-$\varepsilon_0=8,854\cdot 10^{-12}  F/m$  , $\varepsilon_r=1$+$\varepsilon_0=8.854\cdot 10^{-12}  ~\rm{F/m}$  , $\varepsilon_r=1$
  
 1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$. 1. calculate the magnitude of the force of $Q_2$ on $Q_1$, without the force effect of $Q_3$.
Zeile 18: Zeile 18:
 <button size="xs" type="link" collapse="Loesung_5_1_5_1_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_1_5_1_Endergebnis" collapsed="true"> <button size="xs" type="link" collapse="Loesung_5_1_5_1_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_1_5_1_Endergebnis" collapsed="true">
 \begin{align*} \begin{align*}
- |F_C| = 0.3595 N -> 0.36 N+ |\vec{F}_C| = 0.3595 ~\rm{N} \rightarrow 0.36 ~\rm{N}
 \end{align*} \end{align*}
  \\  \\
Zeile 29: Zeile 29:
 </collapse> </collapse>
  
-Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=100 kV/m$ results. \\ What force (magnitude) now results on $Q_1$?+Now let $Q_2=0$ and the surface charge $Q_3$ be designed in such a way that a homogeneous electric field with $E_3=100 ~\rm{kV/m}$ results. \\ What force (magnitude) now results on $Q_1$?
  
 <button size="xs" type="link" collapse="Loesung_5_1_5_3_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_1_5_3_Endergebnis" collapsed="true"> <button size="xs" type="link" collapse="Loesung_5_1_5_3_Endergebnis">{{icon>eye}} Result</button><collapse id="Loesung_5_1_5_3_Endergebnis" collapsed="true">
 \begin{align*} \begin{align*}
- |F_C| = 0.4 N + |\vec{F}_C| = 0.4 ~\rm{N
 \end{align*} \\ \end{align*} \\
 </collapse> </collapse>