Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Letzte Überarbeitung Beide Seiten der Revision
electrical_engineering_2:the_magnetostatic_field [2023/05/02 13:03]
mexleadmin
electrical_engineering_2:the_magnetostatic_field [2024/04/23 02:26]
mexleadmin
Zeile 1: Zeile 1:
-====== 3The magnetostatic Field ======+====== 3 The magnetostatic Field ======
  
 <callout> <callout>
Zeile 644: Zeile 644:
  
 Explanation of diamagnetism and paramagnetism Explanation of diamagnetism and paramagnetism
-{{youtube>u36QpPvEh2c}}+<WRAP> 
 +<WRAP column half>{{ youtube>u36QpPvEh2c }}         </WRAP> 
 +<WRAP column half>{{ youtube>pniES3kKHvY?300x500 }} </WRAP> 
 +</WRAP>
  
 ==== Ferromagnetic Materials ==== ==== Ferromagnetic Materials ====
Zeile 725: Zeile 728:
 <panel type="info" title="Task 3.2.1 Magnetic Field Strength around a horizontal straight Conductor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 3.2.1 Magnetic Field Strength around a horizontal straight Conductor"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-The current $= 100~\rm A$ flows in a long straight conductor with a round cross-section. The radius of the conductor is $r_{\rm L}= 4~\rm mm$.+The current $I_0 = 100~\rm A$ flows in a long straight conductor with a round cross-section. 
 +The conductor shall have constant electric properties everywhere.  
 +The radius of the conductor is $r_{\rm L}= 4~\rm mm$. 
 + 
 +1. What is the magnetic field strength $H_1$ at a point $P_1$, which is __outside__ the conductor at a distance of $r_1 = 10~\rm cm$ from the conductor axis? 
 + 
 +#@HiddenBegin_HTML~100,Path~@# 
 + 
 +  * The $H$-field is given as: the current $I$ through an area divided by the "specific" length $l$ of the closed path around the area. This shall give you the formula (when not in already known) 
 +  * The relevant current is the given $I_0$. 
 + 
 +#@HiddenEnd_HTML~100,Path~@# 
 + 
 +#@HiddenBegin_HTML~101,Solution~@# 
 + 
 +The $H$-field is given as: 
 +\begin{align*} 
 +H(r) &= {{I_0}\over{2\pi \cdot r}} \\ 
 +  &= {{100~\rm A}\over{2\pi \cdot 0.1 ~\rm m}} \\ 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~101,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~102,Result~@# 
 +\begin{align*} 
 +            H(10~\rm cm) &= 159.15... ~\rm{{A}\over{m}} \\  
 +\rightarrow H(10~\rm cm) &= 159 ~\rm{{A}\over{m}}  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~102,Result~@# 
 + 
 +2. What is the magnetic field strength $H_2$ at a point $P_2$, which is __inside__ the conductor at a distance of $r_2 = 3~\rm mm$ from the conductor axis? 
 + 
 +#@HiddenBegin_HTML~200,Path~@# 
 + 
 +  * Again, the $H$-field is given as: the current $I$ through an area divided by the "specific" length $l$ of the closed path around the area.  
 +  * Here, the relevant current is **not** the given one. There is only a fraction of the current flowing through the part of the conductor inside the $r_2$ 
 + 
 +#@HiddenEnd_HTML~200,Path~@# 
 + 
 +#@HiddenBegin_HTML~201,Solution~@# 
 + 
 +The $H$-field is given as: 
 +\begin{align*} 
 +H(r) &= {{I}\over{2\pi \cdot r}}  
 +\end{align*} 
 + 
 +But now $I$ is not $I_0$ anymore, but only a fraction, so $\Delta I$.  
 +$I_0$ is evenly distributed over the cross-section $A$ of the conductor.  
 +The cross-sectional area is given as $A= r^2 \cdot \pi$ 
 + 
 +So the current $\Delta I$ is given as: current divided by the full area and then times the fractional area: 
 +\begin{align*} 
 +\Delta I &= I_0 \cdot {{r_2^2 \cdot \pi}\over{r_{\rm L}^2 \cdot \pi}} \\ 
 +         &= I_0 \cdot {{r_2^2          }\over{r_{\rm L}^2          }}  
 +\end{align*} 
 + 
 +Therefore, the $H$-field is: 
 +\begin{align*} 
 +H(r) &= {{\Delta I}\over{2\pi \cdot r_2}}  
 +     &&= {{I_0 \cdot {{ r_2^2}\over{r_{\rm L}^2}} }\over{2\pi \cdot r_2}} \\ 
 +     &= {{I_0 \cdot {{ r_2}\over{r_{\rm L}^2}} }\over{2\pi}}  
 +     &&= {{1}\over{2\pi}} I_0 \cdot {{ r_2}\over{r_{\rm L}^2}}   
 +\end{align*} 
 + 
 + 
 +#@HiddenEnd_HTML~201,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~202,Result~@# 
 +\begin{align*} 
 +            H(3~\rm mm) &= 2984.1... ~\rm{{A}\over{m}} \\  
 +\rightarrow H(3~\rm mm) &= 3.0 ~\rm{{kA}\over{m}}  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~202,Result~@#
  
-  * What is the magnetic field strength $H_1$ at a point $P_1$, which is __outside__ the conductor at a distance of $r_1 = 10~\rm cm$ from the conductor axis? 
-  * What is the magnetic field strength $H_2$ at a point $P_2$, which is __inside__ the conductor at a distance of $r_2 = 3~\rm mm$ from the conductor axis? 
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 740: Zeile 815:
 </WRAP> </WRAP>
  
-Three long straight conductors are arranged in a vacuum so that they lie at the vertices of an equilateral triangle (see <imgref BildNr01>). The radius of the circumcircle is $r = 2 ~\rm cm$; the current is given by $I = 2 ~\rm A$.+Three long straight conductors are arranged in a vacuum to lie at the vertices of an equilateral triangle (see <imgref BildNr01>). The radius of the circumcircle is $r = 2 ~\rm cm$; the current is given by $I = 2 ~\rm A$. 
 + 
 +1. What is the magnetic field strength $H({\rm P})$ at the center of the equilateral triangle? 
 + 
 +#@HiddenBegin_HTML~322100,Path~@# 
 + 
 +  * The formula for a single wire can calculate the field of a single conductor. 
 +  * For the resulting field, the single wire fields have to be superimposed. 
 +  * Since it is symmetric the resulting field has to be neutral. 
 + 
 +#@HiddenEnd_HTML~322100,Path~@# 
 + 
 +#@HiddenBegin_HTML~322101,Solution~@# 
 + 
 +In general, the $H$-field of the single conductor is given as: 
 +\begin{align*} 
 +H &= {{I}\over{2\pi \cdot r}} \\ 
 +  &= {{2~\rm A}\over{2\pi \cdot 0.02 ~\rm m}} \\ 
 +\end{align*} 
 + 
 +  * However, even without calculation, the constant distance between point $\rm P$ and the three conductors dictates, that the $H$-field has a similar magnitude.  
 +  * By the symmetry of the conductor, the angles of the $H$-field vectors are defined and evenly distributed on the revolution:   
 +<WRAP> 
 +<imgcaption BildNr02 | Conductor Arrangement> 
 +</imgcaption> 
 +{{drawio>Solution1.svg}} \\ 
 +</WRAP> 
 +#@HiddenEnd_HTML~322101,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~322102,Result~@# 
 +\begin{align*} 
 +            H &= 0 ~\rm{{A}\over{m}}  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~322102,Result~@# 
 + 
 +2. Now, the current in one of the conductors is reversed. To which value does the magnetic field strength $H({\rm P})$ change? 
 + 
 +#@HiddenBegin_HTML~322200,Path~@# 
 + 
 +  * Now, the formula for a single wire has to be used to calculate the field of a single conductor. 
 +  * For the resulting field, the single wire fields again have to be superimposed. 
 +  * The symmetry and the result of question 1 give a strong hint about how much stronger the resulting field has to be compared to the field of the reversed one. 
 + 
 +#@HiddenEnd_HTML~322200,Path~@# 
 + 
 +#@HiddenBegin_HTML~322201,Solution~@# 
 + 
 +The $H$-field of the single reversed conductor $I_3$ is given as: 
 +\begin{align*} 
 +H(I_3) &= {{I}\over{2\pi \cdot r}} \\ 
 +  &= {{2~\rm A}\over{2\pi \cdot 0.02 ~\rm m}} \\ 
 +\end{align*} 
 + 
 +Once again, one can try to sketch the situation of the field vectors: 
 +<WRAP> 
 +<imgcaption BildNr02 | Conductor Arrangement> 
 +</imgcaption> 
 +{{drawio>Solution2.svg}} \\ 
 +</WRAP> 
 + 
 +Therefore, it is visible, that the resulting field is twice the value of $H(I_3)$: \\ 
 +The vectors of $H(I_1)$ plus $H(I_2)$ had in the task 1 just the length of $H(I_3)$. 
 + 
 + 
 +#@HiddenEnd_HTML~322201,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~322202,Result~@# 
 +\begin{align*} 
 +            H &= 31.830... ~\rm{{A}\over{m}} \\ 
 +\rightarrow H &= 31.8 ~\rm{{A}\over{m}} \\ 
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~322202,Result~@# 
  
-  - What is the magnetic field strength $H({\rm P})$ at the center of the equilateral triangle? 
-  - Now, the current in one of the conductors is reversed. To which value does the magnetic field strength $H({\rm P})$ change? 
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
  
Zeile 757: Zeile 904:
  
 In each case, the magnetic voltage $V_{\rm m}$ along the drawn path is sought. In each case, the magnetic voltage $V_{\rm m}$ along the drawn path is sought.
 +
 +
 +#@HiddenBegin_HTML~323100,Path~@#
 +
 +  * The magnetic voltage is given as the **sum of the current through the area within a closed path**.
 +  * The direction of the current and the path have to be considered with the righthand rule.
 +
 +#@HiddenEnd_HTML~323100,Path~@#
 +
 +#@HiddenBegin_HTML~323102,Result a)~@#
 +a) $\theta_\rm a = - I_1 = - 2~\rm A$ \\
 +#@HiddenEnd_HTML~323102,Result~@#
 +
 +#@HiddenBegin_HTML~323103,Result b)~@#
 +b) $\theta_\rm b = - I_2 = - 4.5~\rm A$ \\
 +#@HiddenEnd_HTML~323103,Result~@#
 +
 +#@HiddenBegin_HTML~323104,Result c)~@#
 +c) $\theta_\rm c = 0 $ \\
 +#@HiddenEnd_HTML~323104,Result~@#
 +
 +#@HiddenBegin_HTML~323105,Result d)~@#
 +d) $\theta_\rm d = + I_1 - I_2 = 2~\rm A - 4.5~\rm A = - 2.5~\rm A$ \\
 +#@HiddenEnd_HTML~323105,Result~@#
 +
 +#@HiddenBegin_HTML~323106,Result e)~@#
 +e) $\theta_\rm e = + I_1 = + 2~\rm A$ \\
 +#@HiddenEnd_HTML~323106,Result~@#
 +
 +#@HiddenBegin_HTML~323107,Result f)~@#
 +f) $\theta_\rm f = 2 \cdot (- I_1) = - 4~\rm A$ \\
 +#@HiddenEnd_HTML~323107,Result~@#
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 767: Zeile 946:
 A $\rm NdFeB$ magnet can show a magnetic flux density up to $1.2 ~\rm T$ near the surface.  A $\rm NdFeB$ magnet can show a magnetic flux density up to $1.2 ~\rm T$ near the surface. 
  
-  - For comparison, the same flux density shall be created on the inside of a toroidal coil with $10'000$ windings and a toroidal diameter for the average field line of $d = 1~\rm m$. \\ How much current $I$ is necessary for one of the windings of the toroidal coil? +1. For comparison, the same flux density shall be created inside a toroidal coil with $10'000$ windings and a toroidal diameter for the average field line of $d = 1~\rm m$. \\ How much current $I$ is necessary for one of the windings of the toroidal coil? 
-  - What would be the current $I_{\rm Fe}$, when a iron core with $\varepsilon_{\rm Fe,r} = 10'000$?+ 
 +#@HiddenBegin_HTML~331100,Path~@# 
 + 
 +  * The $B$-field can be calculated by the $H$-field. 
 +  * The $H$-field is given as: the current $I$ through an area divided by the "specific" length $l$ of the closed path around the area. This shall give you the formula (when not already known) 
 +  * The current is number of windings times $I$. 
 + 
 +#@HiddenEnd_HTML~331100,Path~@# 
 + 
 +#@HiddenBegin_HTML~331101,Solution~@# 
 + 
 +The $B$-field is given as: 
 +\begin{align*} 
 +B &= \mu \cdot H \\ 
 +  &= \mu \cdot {{I \cdot N}\over{l}} \\ 
 +\end{align*} 
 + 
 +This can be rearranged to the current $I$: 
 +\begin{align*} 
 +I &= {{B \cdot l}\over{\mu \cdot N}} \\ 
 +  &= {{1.2 ~\rm T \cdot 1 ~\rm m}\over{4\pi\cdot 10^-7 {\rm{Vs}\over{Am}}  \cdot 10'000}}  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~331101,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~331102,Result~@# 
 +\begin{align*} 
 +            I &= 95.49... ~\rm A \\  
 +\rightarrow I &= 95.5 ~\rm A  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~331102,Result~@# 
 + 
 +2. What would be the current $I_{\rm Fe}$, when a iron core with $\varepsilon_{\rm Fe,r} = 10'000$? 
 + 
 + 
 +#@HiddenBegin_HTML~331201,Solution~@# 
 + 
 +Now $\mu$ has to be given as $\mu_r \cdot \mu_0$: 
 + 
 +This can be rearranged to the current $I$: 
 +\begin{align*} 
 +I &= {{B \cdot l}\over{\mu \cdot N}} \\ 
 +  &= {{1.2 ~\rm T \cdot 1 ~\rm m}\over{10'000 \cdot 4\pi\cdot 10^-7 {\rm{Vs}\over{Am}}  \cdot 10'000}}  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~331201,Solution ~@# 
 + 
 +#@HiddenBegin_HTML~331202,Result~@# 
 +\begin{align*} 
 +            I &= 0.009549... ~\rm A \\  
 +\rightarrow I &= 9.55 ~\rm mA  
 +\end{align*} 
 + 
 +#@HiddenEnd_HTML~331202,Result~@#
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 835: Zeile 1068:
 <WRAP group> <WRAP half column> <WRAP group> <WRAP half column>
  
-<quizlib id="quiz" rightanswers="[['a0'],['a2'], ['a2'], ['a0'], ['a1'], ['a2']]" submit="Check Answers">+<quizlib id="quiz" rightanswers="[['a0'],['a2'], ['a1'], ['a2'], ['a1'], ['a2']]" submit="Check Answers">
 <question title="1. Which hand can be used to infer magnetic field direction from currents?" type="radio"> <question title="1. Which hand can be used to infer magnetic field direction from currents?" type="radio">
 The right hand| The right hand|