Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Letzte Überarbeitung Beide Seiten der Revision
electrical_engineering_2:the_stationary_electric_flow [2023/03/26 15:35]
ott
electrical_engineering_2:the_stationary_electric_flow [2023/09/19 23:51]
mexleadmin
Zeile 1: Zeile 1:
-====== 2The stationary Current Density and Flux ======+====== 2 The stationary Current Density and Flux ======
  
 <callout>  <callout> 
Zeile 35: Zeile 35:
 <WRAP> <imgcaption ImgNr01 | part of a Conductor> </imgcaption> {{drawio>charges_in_conductor.svg}} </WRAP> <WRAP> <imgcaption ImgNr01 | part of a Conductor> </imgcaption> {{drawio>charges_in_conductor.svg}} </WRAP>
  
-For this purpose, a packet of charges ${\rm d}Q$ is considered, which will pass the area $A$ during the period ${\rm d}t$ (see <imgref imageNo02>). These charges are located in a partial volume element ${\rm d}V$, which is given by the area $A$ to be traversed and a partial section ${\rm d}x$: ${\rm d}V = A \cdot {\rm d}x$. The amount of charges per volume is given by the charge carrier density, specifically for metals by the electron density $n_\rm{e}$. The electron density $n_\rm{e}$ gives the number of free electrons per unit volume a. For copper, for example, this is approximately $n_{\rm e}({\rm Cu})=8.47 \cdot 10^{19} ~\rm{{1}\over{mm^3}}$.+For this purpose, a packet of charges ${\rm d}Q$ is considered, which will pass the area $A$ during the period ${\rm d}t$ (see <imgref imageNo02>). These charges are located in a partial volume element ${\rm d}V$, which is given by the area $A$ to be traversed and a partial section ${\rm d}x$: ${\rm d}V = A \cdot {\rm d}x$. The amount of charges per volume is given by the charge carrier density, specifically for metals by the electron density $n_{\rm e}$. The electron density $n_{\rm e}$ gives the number of free electrons per unit volume a. For copper, for example, this is approximately $n_{\rm e}({\rm Cu})=8.47 \cdot 10^{19} ~{\rm {1}\over{mm^3}}$.
  
 ~~PAGEBREAK~~ ~~CLEARFIX~~ ~~PAGEBREAK~~ ~~CLEARFIX~~
Zeile 43: Zeile 43:
 The flowing charges contained in the partial volume element $dV$ are then (with elementary charge $e_0$): The flowing charges contained in the partial volume element $dV$ are then (with elementary charge $e_0$):
  
-\begin{align*} dQ n_e \cdot e_0 \cdot A \cdot dx \end{align*}+\begin{align*} {\rm d} Q n_{\rm e} \cdot e_0 \cdot A \cdot  {\rm d}x \end{align*}
  
 The current is then given by $I={{{\rm d}Q}\over{{\rm d}t}}$: The current is then given by $I={{{\rm d}Q}\over{{\rm d}t}}$:
  
-\begin{align*} I = n_e \cdot e_0 \cdot A \cdot {{{\rm d}x}\over{{\rm d}t}} = n_e \cdot e_0 \cdot A \cdot v_e \end{align*}+\begin{align*} I = n_{\rm e} \cdot e_0 \cdot A \cdot {{{\rm d}x}\over{{\rm d}t}} = n_e \cdot e_0 \cdot A \cdot v_{\rm e} \end{align*}
  
 This leads to an electron velocity $v_e$ of: This leads to an electron velocity $v_e$ of:
Zeile 149: Zeile 149:
 <panel type="info" title="Task 2.1.2 Electron velocity in copper"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 2.1.2 Electron velocity in copper"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-A current of $I = 2\{\rm A}$ flows in a conductor made of copper with cross-sectional area $A$. \\ The electron density in copper is $n_{\rm e}({\rm Cu})=8.47 \cdot 10^{19} ~\rm{{1}\over{mm^3}}$ and the magnitude of the elementary charge $e_0 = 1.602 \cdot 10^{-19} ~\rm{As}$+A current of $I = 2~{\rm A}$ flows in a conductor made of copper with cross-sectional area $A$. \\ The electron density in copper is $n_{\rm e}({\rm Cu})=8.47 \cdot 10^{19} ~{\rm {1}\over{mm^3}}$ and the magnitude of the elementary charge $e_0 = 1.602 \cdot 10^{-19} ~{\rm As}$
  
-  - What is the average electron velocity $v_\rm{e,1}$ of electrons when the cross-sectional area of the conductor is $A = 1.5~\rm{mm}^2$? +  - What is the average electron velocity $v_{\rm e,1}$ of electrons when the cross-sectional area of the conductor is $A = 1.5~{\rm mm}^2$? 
-  - What is the average electron velocity $v_\rm{e,1}$ of electrons when the cross-sectional area of the conductor is $A = 1.0~\rm{mm}^2$?+  - What is the average electron velocity $v_{\rm e,1}$ of electrons when the cross-sectional area of the conductor is $A = 1.0~{\rm mm}^2$?
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>
Zeile 158: Zeile 158:
 <panel type="info" title="Task 2.1.3 Electron velocity in Semiconductors"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Task 2.1.3 Electron velocity in Semiconductors"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-Similar to task 2.1.2 a current of $I = 2~\rm{A}$ shall flow through a cross-sectional area $A = 1.5~\rm{mm}^2$ of semiconductors. \\ +Similar to task 2.1.2 a current of $I = 2~{\rm A}$ shall flow through a cross-sectional area $A = 1.5~{\rm mm}^2$ of semiconductors. \\ 
-(magnitude of the elementary charge $e_0 = 1.602 \cdot 10^{-19} ~\rm{As}$)+(magnitude of the elementary charge $e_0 = 1.602 \cdot 10^{-19} ~{\rm As}$)
  
-  - What is the average electron velocity $v_\rm{e,1}$ of electrons for undoped silicon (electron density $n_{\rm e}({\rm Si})=9.65 \cdot 10^{9} ~\rm{{1}\over{cm^3}}$ at room temperature)? +  - What is the average electron velocity $v_{\rm e,1}$ of electrons for undoped silicon (electron density $n_{\rm e}({\rm Si})=9.65 \cdot 10^{9} ~{\rm {1}\over{cm^3}}$ at room temperature)? 
-  - The electron density of doped silicon $n_\rm{e}(Si\; doped)$ is (mainly) given by the number of dopant atoms per volume. The doping shall provide 1 donator atom per $10^7$ silicon atoms (here: one donator atom shall release one electron). The molar volume of silicon is $12 \cdot 10^{-6}~\rm{{m^3}\over{mol}}$ with $6.022 \cdot 10^{23}$ silicon atoms per $\rm{mol}$. What is the average electron velocity $v_\rm{e,1}$ of electrons for doped silicon?+  - The electron density of doped silicon $n_{\rm e}(Si\; doped)$ is (mainly) given by the number of dopant atoms per volume. The doping shall provide 1 donator atom per $10^7$ silicon atoms (here: one donator atom shall release one electron). The molar volume of silicon is $12 \cdot 10^{-6}~{\rm {m^3}\over{mol}}$ with $6.022 \cdot 10^{23}$ silicon atoms per ${\rm mol}$. What is the average electron velocity $v_{\rm e,1}$ of electrons for doped silicon?
  
  
Zeile 240: Zeile 240:
 In transformer stations sometimes water resistors are used as {{wp>Liquid rheostat}}. In this resistor, the water works as a (poor) conductor which can handle a high power loss.  In transformer stations sometimes water resistors are used as {{wp>Liquid rheostat}}. In this resistor, the water works as a (poor) conductor which can handle a high power loss. 
  
-The water resistor consists of a water basin. In the given basin two quadratic plates with the edge length of $l = 80 ~\rm{cm}$ are inserted with the distance $d$ between them.  +The water resistor consists of a water basin. In the given basin two quadratic plates with the edge length of $l = 80 ~{\rm cm}$ are inserted with the distance $d$ between them.  
-The resistivity of the water is $\rho = 0.25 ~\Omega \rm{m}$. The resistor shall dissipate the energy of $P = 4 ~\rm{kW}$ and shall exhibit a homogeneous current field. +The resistivity of the water is $\rho = 0.25 ~\Omega {\rm m}$. The resistor shall dissipate the energy of $P = 4 ~{\rm kW}$ and shall exhibit a homogeneous current field. 
  
-  - Calculate the required distance of the plates to get a current density of $S = 25 ~\rm{mA/cm^2}$+  - Calculate the required distance of the plates to get a current density of $S = 25 ~{\rm mA/cm^2}$
   - What are the values of the current $I$ and the voltage $U$ at the resistor, such as the internal electric field strength $E$ in the setup?   - What are the values of the current $I$ and the voltage $U$ at the resistor, such as the internal electric field strength $E$ in the setup?
  
 </WRAP></WRAP></panel> </WRAP></WRAP></panel>