Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
Nächste Überarbeitung Beide Seiten der Revision
electrical_engineering_2:the_time-dependent_magnetic_field [2023/04/23 08:56]
ott
electrical_engineering_2:the_time-dependent_magnetic_field [2023/05/02 08:42]
ott
Zeile 141: Zeile 141:
   - Make a sketch of the situation for use in visualizing and recording directions.   - Make a sketch of the situation for use in visualizing and recording directions.
   - Determine the direction of the applied magnetic field $\vec{B}$.   - Determine the direction of the applied magnetic field $\vec{B}$.
-  - Determine whether its magnetic flux is increasing or decreasing.+  - Determine whether the magnitude of its magnetic flux is increasing or decreasing.
   - Now determine the direction of the induced magnetic field $\vec{B_{\rm ind}}$. The induced magnetic field tries to reinforce a magnetic flux that is decreasing or opposes a magnetic flux that is increasing. Therefore, the induced magnetic field adds or subtracts from the applied magnetic field, depending on the change in magnetic flux.   - Now determine the direction of the induced magnetic field $\vec{B_{\rm ind}}$. The induced magnetic field tries to reinforce a magnetic flux that is decreasing or opposes a magnetic flux that is increasing. Therefore, the induced magnetic field adds or subtracts from the applied magnetic field, depending on the change in magnetic flux.
   - Use the right-hand rule to determine the direction of the induced current $i_{\rm ind}$ that is responsible for the induced magnetic field $\vec{B}_{\rm ind}$.   - Use the right-hand rule to determine the direction of the induced current $i_{\rm ind}$ that is responsible for the induced magnetic field $\vec{B}_{\rm ind}$.
Zeile 351: Zeile 351:
 <panel type="info" title="Exercise 4.3.4 Calculating the Potential Difference Induced in a Generator Coil"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%> <panel type="info" title="Exercise 4.3.4 Calculating the Potential Difference Induced in a Generator Coil"> <WRAP group><WRAP column 2%>{{fa>pencil?32}}</WRAP><WRAP column 92%>
  
-The generator coil shown in <imgref ImgNr13> is rotated through one-fourth of a revolution (from $\phi_0=0°$ to $\phi_1=90°$) in $5.0 ~\rm ms$. +The generator coil shown in <imgref ImgNr13> is rotated through one-fourth of a revolution (from $\varphi_0=0°$ to $\varphi_1=90°$) in $5.0 ~\rm ms$. 
 The $200$-turn circular coil has a $5.00 ~\rm cm$ radius and is in a uniform $0.80 ~\rm T$ magnetic field. The $200$-turn circular coil has a $5.00 ~\rm cm$ radius and is in a uniform $0.80 ~\rm T$ magnetic field.
  
Zeile 667: Zeile 667:
 So, the course of the voltage when entering or exiting is not uniquely given. So, the course of the voltage when entering or exiting is not uniquely given.
  
-<WRAP> <imgcaption ImgNrEx04s| Solution> </imgcaption> <WRAP> {{drawio>WindingPolePieces2solution}}  \\ </WRAP></WRAP>+<WRAP> <imgcaption ImgNrEx04s| Solution> </imgcaption> <WRAP>{{drawio>WindingPolePieces2solution.svg}}  \\ </WRAP></WRAP>